PRISM mentor | Research Interests |
---|---|
Stephen Luby Med: Infectious Diseases
Med: Infectious Diseases Last Updated: August 09, 2021 |
Dr. Luby’s research group is engaged in several efforts to generate knowledge that will alter the way that bricks are manufactured across South Asia so that they generate less air pollution, less climate change and tens of thousands fewer deaths per year. This involves: 1) evaluating interventions to improve combustion efficiency within brick kilns and so simultaneously reduce coal costs for producers while generating less pollution 2) using remote sensing to specify the location of brick kilns and ultimately evaluate their emissions. Another strand of his work looks at the release of lead into the environment in low and middle income countries, seeks to identify the sources of lead that is generating the greatest public health burden and develops and evaluates interventions to reduce this burden. His research group also explores practical interventions to reduce infectious disease transmission in low and middle income countries. These activities include efforts to maximize the uptake of masks, water treatment and vaccines with careful evaluation of the impact of these interventions. His research group explores strategies to reduce the risk of pathogen transmission in healthcare facilities in lower income countries.
|
Julie Parsonnet Med: Infectious Diseases
Med: Infectious Diseases Last Updated: January 27, 2023 |
I am an infectious diseases physician and epidemiologist OUr lab is well know internationally in two major areas: 1. The role of infections in chronic diseases and 2. Physiologic changes in humans over time, specifically the decrease in human body temperature. 3. Novel surveillance projects, especially serosurveys done through the mail and the use of wastewater to track infections. Right now, projects that could integrate a post-doctoral fellow include: In addition, my research group works on gun violence prevention. 1. Analysis of a California population-based serosurvey on SARS-COV2 infection, including information on human behaviors (mask wearing, social , vaccination) and demographics (age, race, education), We could expand this study to look at other infectious diseases as well. 2. Research assessing the association between high normal body temperature and longevity. 3. Gun violence prevention. Gun violence is a national tragedy. We have two major projects in this area: a. A project with Santa Clara County Department of Public health that combines the many data sources on gun violence across the county (Police, hospitals,EMT, schools, health departments), bring together stakeholders at community organizations across the county fighting gun violence and work with health care workers to identify strategies to educate patients on gun violence prevention. b. Educational project development to teach physicians across the county how to talk to patients about gun violence
|
Julie Parsonnet Med: Infectious Diseases
Med: Infectious Diseases Last Updated: January 27, 2022 |
Dr. Parsonnet is an Infectious Diseases epidemiologist and clinician. The Parsonnet lab works to understand how infectious agents influence the development of chronic diseases. During the COVID crisis, the lab has also been actively involved in a wide range of investigations of this disease ranging from large seroepidemiologic studies to novel treatment trials to collaborative studies on COVID immunology. Studies that could potentially take a fellow include:
|
David Relman Med: Infectious Diseases
Med: Infectious Diseases Last Updated: July 14, 2022 |
The primary research focus of the Relman Lab is the human indigenous microbiota (microbiome), and in particular, the nature and mechanisms of variation in patterns of microbial diversity within the human body as a function of time (microbial succession), space (biogeography within the host landscape), and in response to perturbation, e.g., antibiotics (community robustness and resilience). One of the goals of this work is to define the role of the human microbiome in health and disease. We are particularly interested in measuring and understanding resilience in the human microbial ecosystem. Our work includes the human oral cavity, gut, and female reproductive tract, as well as an analysis of microbial diversity in marine mammals. This research integrates theory and methods from ecology, population biology, environmental microbiology, genomics and clinical medicine.
|
Upi Singh Med: Infectious Diseases
Med: Infectious Diseases Last Updated: February 23, 2024 |
Singh lab - basic and translational science for parasitic amebic pathogens including gene expression, developmental control and identification of new drug regimens.
|
PRISM mentor | Research Interests |
---|---|
Andrew Mannix Geballe Lab for Adv Mat
Geballe Lab for Adv Mat Last Updated: July 13, 2022 |
Building synthetic solids with atomic precision from layered sheets and other nanomaterials. Scanning probe characterization of atomic-scale electronic and opto-electronic phenomena. 2D materials and thin film growth. |
PRISM mentor | Research Interests |
---|---|
Eric Darve Institute for Computational and Mathematical Engineering
Institute for Computational and Mathematical Engineering Last Updated: August 15, 2023 |
|
Alison Marsden Institute for Computational and Mathematical Engineering
Institute for Computational and Mathematical Engineering Last Updated: August 09, 2020 |
The Cardiovascular Biomechanics Computation Lab develops fundamental computational methods for the study of cardiovascular disease progression, surgical methods, treatment planning and medical devices. We focus on patient-specific modeling in pediatric and congenital heart disease, as well as adult cardiovascular disease. Our lab bridges engineering and medicine through the departments of Pediatrics, Bioengineering, and the Institute for Computational and Mathematical Engineering. We develop the SimVascular open source project.
|
PRISM mentor | Research Interests |
---|---|
Sheri Krams Immunity Transplant Infection
Immunity Transplant Infection Last Updated: August 12, 2020 |
Current Research Projects
• Pediatric Research Immune Network on SARS-CoV-2 and MIS-C (PRISM) • Work with our team to consent subjects, obtain and process samples for immune assays to determine the immune responses in children with COVID. • Identification and Therapeutic Targeting of a Novel Cell Population in Rejection of Vascularized Composite Allotransplantation • Work with our microsurgeon to establish the cell populations, using CyTOF, important in the initiation of T cell‒mediated rejection of vascularized composite allotransplantation. • Exosomes as a Reliable Noninvasive Method for Monitoring VCA Graft Rejection • Work with our microsurgeon to assess the importance of exosomes and their cargo in graft rejection in a novel experimental model of vascularized composite allotransplantation • Exosomes and the Immune Response in Allograft Outcomes in Pediatric Transplant Recipients • Work with a senior postdoctoral fellow to determine the impact of an allograft on the early post-transplant immune response.
|
Sheri Krams Immunity Transplant Infection
Immunity Transplant Infection Last Updated: June 23, 2022 |
Our research focuses on the control of immune responses to alloantigen and viruses (EBV, SARS-CoV-2) using both experimental models and human immunology. Current studies ongoing in the lab are: Insight into Development and Progression of Multi-System Inflammatory Syndrome and COVID in Children. Exosomes and microRNAs in the regulation of Immune Responses NK Cell Diversity and Responses to viral and allo antigens Novel T regulatory populations Molecular and Cellular Immunobiology/CyTOF/bioinformatics
|
Olivia Martinez Immunity Transplant Infection
Immunity Transplant Infection Last Updated: August 15, 2023 |
My laboratory investigates the immune response to viruses and allogeneic tissues. We are interested in characterizing the human immune response to EBV, CMV, and SARS-CoV-2 to distinguish features that are associated with control of the virus or result in pathologies including COVID-19, MIS-C, and post-transplant viral disease. Projects that are available include 1) analysis of the diversity of TCR usage in the response to EBV, CMV, and SARS-CoV-2 through the use of next generation sequencing and single cell approaches to evaluate T cell phenotype and function; 2) characterization of the natural killer (NK) cell populations that participate in the response to viruses; 3) determining the role of the viral protein LMP1 in activation of the PI3K/Akt/mTOR pathway and the effect of targeting this pathway in EBV-associated B cell lymphoma development. 4) identification of novel host gene targets and pathways of oncogenesis utilized by EBV. Human immunology projects utilize cell lines as well as existing extensive repositories of human blood and tissue samples. Animal models of transplant immunology and tumor immunology are also established in the lab. Molecular and Cellular Immunobiology |
William Robinson Immunity Transplant Infection
Immunity Transplant Infection Last Updated: January 12, 2022 |
Our lab studies the molecular mechanisms of and develops therapies to treat autoimmune and rheumatic diseases, with a focus on rheumatoid arthritis, osteoarthritis, multiple sclerosis, and systemic lupus erythematosus. The overriding objectives of our laboratory are: 1) To investigate the mechanisms underlying autoimmune diseases. 2) To develop novel diagnostics and therapeutics for autoimmune and rheumatic diseases. 3) To investigate the role of innate immune inflammation in osteoarthritis. We perform translational research, with the goal of rapidly converting discoveries made at the bench into practical patient care tools and therapies.
|
PRISM mentor | Research Interests |
---|---|
Agnieszka Czechowicz Stem Cell Bio Regenerative Med
Stem Cell Bio Regenerative Med Last Updated: February 01, 2022 |
The lab's current research is aimed primarily at understanding how hematopoietic stem cells interact with their microenvironment in order to subsequently modulate these interactions to ultimately improve bone marrow transplantation and unlock biological secrets that further enable regenerative medicine broadly. We are primarily focused on studying the cell surface receptors on hematopoietic stem/progenitor cells and bone marrow stromal cells, and are actively learning how manipulating these can alter cell state and cell fate. We have also pioneered several antibody-based conditioning methods that are at various stages of clinical development to enable safer stem cell transplantation. There are many exciting opportunities that stem from this work across a variety of disease states ranging from rare genetic diseases, autoimmune diseases, solid organ transplantation, microbiome and cancer. While we are primarily focused on blood and immune diseases, the expanded potential of this work is much broader and can be applied to other organ systems as well and we are very eager to develop collaborations across disease areas. The Czechowicz lab hopes to further add in the field of translation research. Goals We aim to increase our understanding of the basic science principles that govern these cells and then exploit these findings to develop improved therapies for patients We are particularly focused on pediatric non-malignant bone marrow transplantation with a strong interest in genetic blood/immune diseases and bone marrow failure, but do complementry work on solid tumors with marrow disease, solid organ tolerance induction, autoimmune diseases and gene therapy/gene editing.
|
Max Diehn Stem Cell Bio Regenerative Med
Stem Cell Bio Regenerative Med Last Updated: May 31, 2024 |
The overarching research goal of the Diehn lab is to develop and translate novel diagnostic assays and therapies to improve personalized treatment of cancer patients. We have a major focus on the development and application of liquid biopsy technologies for human cancers, with a particular emphasis on lung cancers and circulating tumor DNA (ctDNA). We also investigate mechanisms of treatment resistance to radiotherapy, immunotherapy, and targeted agents. Most of our research projects start by identifying an unmet need in the clinical management of cancer patients that we then try to solve via development or application of novel technologies. We use genomics, bioinformatics, stem cell biology, genome editing, mouse genetics, and preclinical cancer models in our work. Discoveries from our group are currently being tested in multiple clinical trials at Stanford and elsewhere in order to translate them into the clinic.
|
Margaret Fuller Stem Cell Bio Regenerative Med
Stem Cell Bio Regenerative Med Last Updated: February 27, 2023 |
We study the genetic and molecular mechanisms that regulate proliferation and differentiation in adult stem cell lineages, using the Drosophila male germ line as a model. Our current work is focused on the switch from mitosis to meiosis and how the new gene expression program for cell type specific terminal differentiation is turned on. One emerging surprise is the potential role of alternative processing of nascent mRNAs in setting up the dramatic change in cell state
|
Natalia Gomez-Ospina Stem Cell Bio Regenerative Med
Stem Cell Bio Regenerative Med Last Updated: May 31, 2024 |
The main focus of Dr. Gomez-Ospina’s lab is to develop therapies for patients with genetic neurodgenerative diseases. The lab uses genome editing and stem cells to produce definitive treatments for childhood neurodegenerative diseases, many of which are lysosomal storage disorders. Current projects in the lab include developing autologous transplantation of genome-edited hematopoietic stem cells for Mucopolysaccharidosis type I, Gaucher, Krabbe disease, Frontotemporal Dementia, and Friedreich's ataxia. Although there is a strong translational focus to the lab, we are also pursuing basic science questions to understand and enhance our therapies including: 1) increasing the efficiency of genome editing tools, 2) understanding microglia turnover in response to conditioning before hematopoietic stem transplant, and 3) stablishing brain-specific conditioning regimens to neurometabolic diseases. |
Maria Grazia Roncarolo Stem Cell Bio Regenerative Med
Stem Cell Bio Regenerative Med Last Updated: February 23, 2024 |
Roncarolo laboratory is exploring the basic biology and translational applications of human type 1 regulatory cells (Tr1). We are using engineered Tr1, ex vivo Tr1, and alloantigen-specific Tr1 to uncover the molecular frameworks that govern Tr1 identity, differentiation and function. We are also translating Tr1 into the clinic. First, Tr1 can be used as a supportive cell therapy to enhance stem cell engraftment and immune reconstitution after hematopoietic stem cell transplantation (HSCT). Alloantigen-specific Tr1, designed to prevent graft-vs-host disease (GvHD) after allogeneic HSCT, are already being tested in a phase I/II clinical trial (NCT03198234). Second, we are investigating the mechanisms of action and clinical potential of the engineered Tr1 called CD4(IL-10) or LV-10, generated by lentiviral transduction of CD4 T cells with IL10 gene. Besides their immunosuppressive and anti-GvHD properties, LV-10 lyse primary acute myeloid leukemia (AML) cells and delay myeloid leukemia progression in vivo. We are exploring LV-10 as a novel cell immunotherapy for AML. Finally, we are interested in curing inborn errors of immunity by stem cell transplantation or autologous stem cell gene correction. We are testing a gene editing strategy to correct pathogenic mutations in IL10 and IL10 receptor genes, which cause severe and debilitating VEO-IBD (very early onset inflammatory bowel disease) in infants and young children.
|
Kyle Loh Stem Cell Bio Regenerative Med
Stem Cell Bio Regenerative Med Last Updated: August 18, 2023 |
How the richly varied cell-types in the human body arise from one embryonic cell is a biological marvel and mystery. We have mapped how human pluripotent stem cells develop into over thirty different human cell-types. This roadmap allowed us to efficiently and rapidly generate human liver, bone, heart and blood vessel progenitors in a Petri dish from pluripotent stem cells. Each of these tissue precursors could regenerate their cognate tissue upon injection into respective mouse models, with relevance to regenerative medicine. In addition to our interests in developmental and stem cell biology, we also harbor an emerging interest in deadly biosafety level 4 viruses, such as Ebola and Nipah viruses. |
Ravi Majeti Stem Cell Bio Regenerative Med
Stem Cell Bio Regenerative Med Last Updated: August 16, 2020 |
The Majeti lab focuses on the molecular/genomic characterization and therapeutic targeting of leukemia stem cells in human hematologic malignancies, particularly acute myeloid leukemia (AML). In parallel, the lab also investigates normal human hematopoiesis and hematopoietic stem cells. Our lab uses experimental hematology methods, stem cell assays, genome editing, and bioinformatics to define and investigate drivers of leukemia stem cell behavior. As part of these studies, we have led the development and application of robust xenotransplantation assays for both normal and malignant human hematopoietic cells. A major focus of the lab is the investigation of pre-leukemic hematopoietic stem cells in human AML.
|
Aaron Newman Stem Cell Bio Regenerative Med
Stem Cell Bio Regenerative Med Last Updated: June 02, 2022 |
Our group combines computational and experimental techniques to study the cellular organization of complex tissues, with a focus on determining the phenotypic diversity and clinical significance of tumor cell subsets. We have a particular interest in developing innovative data science tools that illuminate the cellular hierarchies and stromal elements that underlie tumor initiation, progression, and response to therapy. As part of this focus, we develop new algorithms to resolve cellular states and multicellular communities, tumor developmental hierarchies, and single-cell spatial relationships from genomic profiles of clinical biospecimens. Key results are further explored experimentally, both in our lab and through collaboration, with the goal of translating promising findings into the clinic. As a member of the Department of Biomedical Data Science and the Institute for Stem Cell Biology and Regenerative Medicine, and as an affiliate of graduate programs in Biomedical Informatics, Cancer Biology, and Immunology, we are also interested in the development of impactful biomedical data science tools in areas beyond our immediate research focus, including developmental biology, regenerative medicine, and systems immunology. |
Lucy Erin O'Brien Stem Cell Bio Regenerative Med
Stem Cell Bio Regenerative Med Last Updated: May 31, 2024 |
Mature organs respond to the body's changing needs by moving between different 'states' of cellular flux. The same organ exhibits different kinds of cell flux over time. This is because flux is dynamically tuned to optimize organ function. At homeostasis, cell addition balances loss, giving rise to equilibrium. Upon environmental change, transient disequilibrium promotes physiological growth or shrinkage. When disequilibrium becomes chronic, it leads to pathogenic resizing and disease. We conceptualize these differences as 'organ states' that form a phase space. What does organ-scale cellular flux look like, and how do these dynamics arise? We know many molecular signals that impact cellular flux. Yet, we have scarcely begun to discover how these signals alter the 'lifecycle' of individual cells or understand how cells' life cycles integrate to create diverse organ states. For most organs, even basic spatiotemporal features of these cell behaviors remain mysterious. Our goal is to explain—and ultimately even predict—how large populations of individual cells act to create diverse organ states in response to external change. We believe that the cell dynamics of adult organs can be understood in the granular way that we currently understand embryonic gastrulation. Toward this vision, we build new experimental approaches and conceptual models to decipher how cell life cycles and molecular signaling together create the organ phase space. The fly gut is our testing ground for probing cell dynamics at the organ-scale… The adult Drosophila midgut, or fly gut, is a stem-cell based digestive organ. Its relative simplicity (~10,000 cells), extreme genetic tractability, and ease of handling make it ideal for exploring how single-cell behaviors scale to produce whole-organ phenotypes. Because the organ phase space and the cellular life cycle are general features of adult organs, the lessons we learn from the fly gut will provide a general template for organs in other animals, including humans. …and is a powerful model to study how dynamic cell flux maintains healthy organ form. The fly gut is also an archetypical example of an epithelial tube, which is both the most primitive organ form and the form of most organs in our own bodies. As our ability to grow human organs in a dish becomes closer to reality, understanding how general principles of epithelial organization operate with the particular dynamics of adult organs becomes crucial for designing better, safer organ therapies. We leverage these well-understood principles of epithelial organization in order to study how the dynamics of cellular flux in the fly gut both reinforce and respond to organ shape. |
Albert Wu Stem Cell Bio Regenerative Med
Stem Cell Bio Regenerative Med Last Updated: January 13, 2022 |
Our translational research laboratory endeavors to bring breakthroughs in stem cell biology and tissue engineering to clinical ophthalmology and reconstructive surgery. Over 6 million people worldwide are afflicted with corneal blindness, usually caused by chemical and thermal burns, ocular cicatricial pemphigoid, Stevens-Johnson syndrome, microbial infections, or chronic inflammation. These injuries often result in corneal vascularization, conjunctivalization, scarring, and opacification from limbal epithelial stem cell (LSC) deficiency (LSCD), for which there is currently no durable treatment. The most promising cure for bilateral LSCD is finding an autologous source of limbal epithelial cells for transplantation. Utilizing recent advances in the field of induced pluripotent stem cells (iPSC), our research aims to create a reliable and renewable source of limbal epithelial cells for potential use in treating human eye diseases. These cells will be grown on resorbable biomatrices to generate stable transplantable corneal tissue. These studies will serve as the basis for human clinical trials and make regenerative medicine a reality for those with sight-threatening disease. On a broader level, this experimental approach could serve as a paradigm for the creation of other transplantable tissue for use throughout the body. Stem cell biology has the potential to influence every field of medicine and will revolutionize the way we perform surgery. |
PRISM mentor | Research Interests |
---|---|
Tom Abel Kavli Institute
Kavli Institute Last Updated: October 18, 2021 |
Tom's current research focuses on studying the formation and evolution of galaxies with new numerical techniques, however, he enjoys all areas of non-linear physics which can be addressed using supercomputer calculations! His research interests span dark matter dynamics, the physics of collisionless shocks, investigating the role that cosmic rays and magnetic fields play in the formation and evolution of galaxies, modeling the formation of stars and black holes as well as turbulence, and applications of numerical general relativity. |
Daniel Akerib Kavli Institute
Kavli Institute Last Updated: February 23, 2024 |
Together with Tom Shutt, Dan works on the LUX and LZ dark matter experiments to search for dark matter in the form of Weakly Interacting Massive Particles, or WIMPs. The detectors use liquid xenon as a target medium in a time projection chamber, or TPC. The Large Underground Xenon (LUX) experiment is currently operating a 250-kg target in the former Homestake gold mine in the Black Hills of South Dakota. Preparations are underway at SLAC to design and build the 7-ton successor, known as LUX-ZEPLIN (LZ). The group is involved in many aspects of data analysis, detector design, xenon purification, control andreadout systems, and detector performance studies. |
Steven Allen Kavli Institute
Kavli Institute Last Updated: February 23, 2024 |
Steve is interested in the physics of the most massive objects in the Universe and how we can use them to probe how the Universe evolved. Steve and his group are currently focused on understanding the astrophysics of galaxies and of galaxy clusters using multi-wavelength observations, and on using large, statistical samples of these objects to probe the natures of dark matter, dark energy and fundamental physics. More information regarding ongoing research and a list of Steve's current group members can be found here. |
Roger Blandford Kavli Institute
Kavli Institute Last Updated: February 23, 2024 |
Roger has broad interests in particle astrophysics and cosmology. Roger and his group are currently working on studies of gravitational lensing, compact objects (black holes, neutron stars and white dwarfs) and cosmic rays, tackling difficult questions such as the unknown nature of the gamma-ray flares of the Crab Nebula. He is interested in topics which range from pure theory through phenomenological studies to analysis of observational data. Some of his groups research is strongly computational but plenty is not. |
Patricia Burchat Kavli Institute
Kavli Institute Last Updated: July 13, 2022 |
Pat and her research group are currently working hard as part of the exciting Large Synoptic Survey Telescope Dark Energy Science Collaboration in the general area of gravitational lensing. Her group is using analytic calculations, simulations and existing astronomical images to thoroughly understand potential systematic biases and challenges in extracting accurate and precise measurements of cosmic shear from gravitational lensing with current and future surveys. Current projects include the study of chromatic effects and blended objects. |
Susan Clark Kavli Institute
Kavli Institute Last Updated: August 15, 2023 |
Susan is broadly interested in astrophysical magnetism and the physics of the interstellar medium (ISM), from diffuse gas to dense, star-forming regions. Susan’s research tackles open questions like the structure of the Milky Way’s magnetic field, the nature of interstellar turbulence and the multi-phase ISM, and the role of magnetism in star formation. These big questions demand multiwavelength observations and new data analysis techniques. Susan and her group decipher the magnetic ISM using a combination of theory and observation. Data-wise, the group uses a wide range of tracers including gas line emission and absorption, polarized dust and synchrotron emission, starlight polarization, Zeeman splitting, and Faraday rotation. Susan is involved in a number of current and future telescope projects, and leads several efforts focused on Galactic science with sensitive measurements of millimeter-wavelength emission made by cosmic microwave background experiments like the Atacama Cosmology Telescope (ACT) and the Simons Observatory (SO). |
Susan Clark Kavli Institute
Kavli Institute Last Updated: October 18, 2021 |
Susan is broadly interested in astrophysical magnetism and the physics of the interstellar medium (ISM), from diffuse gas to dense, star-forming regions. Susan’s research tackles open questions like the structure of the Milky Way’s magnetic field, the nature of interstellar turbulence, and the role of magnetism in star formation. These big questions demand multiwavelength observations and new data analysis techniques. Susan is particularly interested in deciphering the magnetic ISM using sensitive measurements of synchrotron and polarized dust emission made by cosmic microwave background experiments like the Atacama Cosmology Telescope (ACT) and the Simons Observatory (SO). |
Peter Graham Kavli Institute
Kavli Institute Last Updated: February 23, 2024 |
Peter is broadly interested in theoretical physics beyond the Standard Model, including cosmology, astrophysics, general relativity, and even atomic physics. The Standard Model leaves many questions unanswered including the nature of dark matter and the origins of the fundamental fermion masses, the weak scale, and the cosmological constant. These and other clues such as the unification of the forces are a guide to building new theories beyond the Standard Model. Peter's group are interested in inventing novel experiments to uncover this new physics. |
Chao-Lin Kuo Kavli Institute
Kavli Institute Last Updated: February 23, 2024 |
Chao-Lin’s group use the most ancient light, the Cosmic Microwave Background (CMB) radiation, emitted when the universe was in its infancy to shed light on the question of how the universe began. Currently Chao-Lin's group are involved in a number of experiments such as BICEP/BICEP2/Keck Array and have been working hard on detecting primordial B-mode polarization. His group are involved in both he design and construction of instruments as well as the data analysis and theoretical interpretation. |
Bruce Macintosh Kavli Institute
Kavli Institute Last Updated: February 23, 2024 |
Our group works with adaptive optics - optical systems that correct for aberrations using mirrors that change their shape thousands of times per second. This can allow telescopes located on the Earth to correct for atmospheric turbulence and produce diffraction-limited images, which we use to study giant extrasolar planets through direct imaging with the Gemini Planet Imager (GPI) instrument. Direct imaging of extrasolar planets separates the light of the (faint) planet and (bright) star, allowing us to measure the spectrum of young self-luminous giant exoplanets. We are currently planning an upgrade to GPI, adding a faster adaptive optics system using predictive control, and more accurate wavefront sensors. We are studying this technology for more powerful instruments on the ground and space. We are also exploring applications in biology - microscopes that can look into tissues. |
Roger Romani Kavli Institute
Kavli Institute Last Updated: February 23, 2024 |
Roger is interested in a variety of topics in high energy astrophysics and cosmology. Much of Roger's group are currently focused on understanding the cosmic gamma-ray sources discovered by the Fermi Space telescope, principally pulsars and blazars. This inherently multi-wavelength question requires them to use telescopes all over the world and in space in order to assemble data on these objects and then to develop and test theoretical models to explain what we see. |
Aaron Roodman Kavli Institute
Kavli Institute Last Updated: February 23, 2024 |
Aaron's current research focus is the study of dark energy using images from the ongoing Dark Energy Survey (DES) and the future Large Synoptic Survey Telescope (LSST). He is interested in studying dark energy using both galaxy clusters and weak gravitational lensing. His research group connects instrumental work, in particular active optics and wavefront measurements at DES and a program of camera-wide testing at LSST, with cosmology measurements. For example, they are developing a new method to characterize the telescope+camera point spread function using optical data, to be part of the weak lensing data analysis at both DES and LSST. |
Philip Scherrer Kavli Institute
Kavli Institute Last Updated: July 14, 2022 |
Phil's main research interests are in the structure and dynamics of the interior of the sun, how this affect solar activity and through this its effects on terrestrial systems. Phil's group’s primary emphasis is on the structure and dynamics of the solar interior using techniques of helioseismology. His group are interested in both developing instrumentation for solar observatories and in the data analysis of solar magnetic fields from space and from the ground. |
Thomas Shutt Kavli Institute
Kavli Institute Last Updated: February 23, 2024 |
Together with Dan Akerib, Tom works on the LUX and LZ dark matter experiments to search for dark matter in the form of Weakly Interacting Massive Particles, or WIMPs. The detectors use liquid xenon as a target medium in a time projection chamber, or TPC. The Large Underground Xenon (LUX) experiment is currently operating a 250-kg target in the former Homestake gold mine in the Black Hills of South Dakota. Preparations are underway atSLAC to design and build the 7-ton successor, known as LUX-ZEPLIN (LZ). The group is involved in many aspects of data analysis, detector design, xenon purification, control andreadout systems, and detector performance studies. |
Risa Wechsler Kavli Institute
Kavli Institute Last Updated: February 23, 2024 |
How did the Universe form and evolve and what is it made of? Our group works on a range of topics in cosmology and astrophysics, with a focus on the formation of cosmological structure in the Universe, its impact on galaxy formation, and its use in determining the nature of dark matter and dark energy. We build and analyze numerical simulations and develop models of large scale structure and galaxy formation for comparison with large observational datasets, and develop new techniques to learn about the dark side of the Universe from these data. We are actively involved in the ongoing Dark Energy Survey (DES), the Dark Energy Spectroscopic Instrument (DESI) and the Large Synoptic Survey Telescope (LSST), and also work on finding, measuring, and modeling dwarf galaxies with the SAGA survey. |
PRISM mentor | Research Interests |
---|---|
Maria Grazia Roncarolo Med: Bone Marrow Transplant
Med: Bone Marrow Transplant Last Updated: February 23, 2024 |
Roncarolo laboratory is exploring the basic biology and translational applications of human type 1 regulatory cells (Tr1). We are using engineered Tr1, ex vivo Tr1, and alloantigen-specific Tr1 to uncover the molecular frameworks that govern Tr1 identity, differentiation and function. We are also translating Tr1 into the clinic. First, Tr1 can be used as a supportive cell therapy to enhance stem cell engraftment and immune reconstitution after hematopoietic stem cell transplantation (HSCT). Alloantigen-specific Tr1, designed to prevent graft-vs-host disease (GvHD) after allogeneic HSCT, are already being tested in a phase I/II clinical trial (NCT03198234). Second, we are investigating the mechanisms of action and clinical potential of the engineered Tr1 called CD4(IL-10) or LV-10, generated by lentiviral transduction of CD4 T cells with IL10 gene. Besides their immunosuppressive and anti-GvHD properties, LV-10 lyse primary acute myeloid leukemia (AML) cells and delay myeloid leukemia progression in vivo. We are exploring LV-10 as a novel cell immunotherapy for AML. Finally, we are interested in curing inborn errors of immunity by stem cell transplantation or autologous stem cell gene correction. We are testing a gene editing strategy to correct pathogenic mutations in IL10 and IL10 receptor genes, which cause severe and debilitating VEO-IBD (very early onset inflammatory bowel disease) in infants and young children.
|
Everett Meyer Med: Bone Marrow Transplant
Med: Bone Marrow Transplant Last Updated: August 13, 2020 |
|
Melody Smith Med: Bone Marrow Transplant
Med: Bone Marrow Transplant Last Updated: November 10, 2021 |
Our lab focuses on the biology of chimeric antigen receptor (CAR) T cells in order to improve the efficacy and safety of this therapy (1) by investigating donor and third-party CAR T cells in an immunocompetent mouse model of allogeneic hematopoietic cell transplant (allo-HCT) and (2) by assessing the impact of the intestinal microbiome on CAR T cell response. We will seek to enhance the development, administration, and mechanistic understanding of how to safely administer donor and third-party CAR T cells with the aim to potentially translate our work to the clinic. We will investigate the regulatory mechanism of the impact of bacterial taxa and the metabolites that they produce on CAR T cell outcomes.
|
PRISM mentor | Research Interests |
---|---|
Justin Annes Med: Endocrin, Geronot & Metab
Med: Endocrin, Geronot & Metab Last Updated: February 23, 2024 |
My lab works towards developing novel therapeutics for Diabetes and Endocrine Cell Tumors. To achieve this goal, we develop (1) new animal disease models to better understand disease pathogenesis (biologists), (2) innovative screening/discovery platforms to identify potential therapeutic targets and lead compounds (biologists/biochemists) and (3) synthesize new chemical entities with desired activities for therapeutic application (medicinal chemists). Hence, typical projects in the lab are interdisciplinary and collaborative where the work of biologists is supported by the power of synthetic chemistry . A major current theme in the lab is addressing the challenge of cell-targeted drug delivery, i.e. how can we develop a medicine that only acts on the cell type of interest and apply this to (a) a regenerative therapy for diabetes and (b) the treatment of cancer. If you're excited about disease modeling and/or drug discovery (in diabetes and cancer) my lab might be a good match for you. |
Joy Wu Med: Endocrin, Geronot & Metab
Med: Endocrin, Geronot & Metab Last Updated: November 29, 2021 |
As a physician scientist with a clinical focus on osteoporosis, my laboratory focuses on stem cell sources for bone-forming osteoblasts, and osteoblast support of hematopoiesis in the bone marrow. In particular we are interested in the pathways that promote osteoblast differentiation, using genetically modified mice and lineage tracing techniques in vivo. We are also studying the role of the osteoblast niche in normal hematopoiesis and bone metastases from breast cancer. Department URL: https://medicine.stanford.edu/
|
PRISM mentor | Research Interests |
---|---|
Justin Annes
Last Updated: February 06, 2023 |
Diabetes is a disorder of glucose homeostasis that causes excess hospitalization, morbidity and early mortality among the more than 34.2 million disease-affected Americans. Consequently, developing pharmacologic methods to preserve β-cell function and/or stimulate β-cell mass expansion is of intense interest. Presently, the creation of improved diabetes medications is stymied by a dearth of safe therapeutic targets. In fact, on-target but off-tissue drug effects are slowing progress across multiple diabetes therapeutic domains including β-cell regeneration, β-cell preservation, and immune-protection. In principle, stimulating the regeneration of insulin-producing β-cells could be used to restore or enhance endogenous insulin production capacity. Recently, we developed several new highly potent chemical inducers of human β-cell proliferation. However, the non-selective growth-promoting activity of these molecules prevents further clinical development. Consequently, a “modular” (readily transferable) system for β-cell-targeted drug delivery is needed to realize the next generation of diabetes therapeutics. To address this challenge, we are developing a β-cell-targeted drug delivery module based upon the uniquely high zinc content of β-cells. In this system, a zinc-chelating moiety is covalently integrated into a replication-promoting (cargo) compound to generate a bi-functional compound (βRepZnC) that selectively enhances β-cell drug accumulation and replication-promoting activity (PMID: 30527998). We are seeking a motivated post-doctoral scholar to join our collaborative research team. This scientist will lead and engage in developing novel βRepZnCs and uncover the biology of β-cell failure. They will define the chemical “rules” that govern zinc-dependent β-cell drug targeting, examine the in vivo β-cell selectivity (accumulation and replication-promoting activity) of newly developed βRepZnCs (work is supported by a synthtic chemist) and use CRISPR technology to genetically dissect the pathways that control β-cell zinc and zinc-binding drug accumulation. These studies will a break-through technology for β-cell-targeted drug delivery and provide fundamental (targetable) insights into β-cell biology. This work has the potential to transform our therapeutic approach to diabetes and provide critical insights into β-cell biology.
|
PRISM mentor | Research Interests |
---|---|
Shoa Clarke Med: Prevention Research Cntr
Med: Prevention Research Cntr Last Updated: August 28, 2023 |
The Clarke Lab uses genomics, epidemiology, and data science to understand cardiovascular disease risk. Key areas of focus include: 1. Equitable development and applications of polygenic risk scores 2. Novel phenotyping using electronic health records, wearables, and/or medical imaging 3. Artificial intelligence applications to medical imaging 4. Studying nataionl biobanks (Million Veteran Program, UK Biobank, All of Us)
|
Christopher Gardner Med: Prevention Research Cntr
Med: Prevention Research Cntr Last Updated: August 27, 2023 |
For the past 30 years most of my research has been focused on investigating the potential health benefits of various dietary components or food patterns, which have been explored in the context of randomized controlled trials in free-living adult populations. Some of the interventions have involved vegetarian diets, soy foods and soy food components, garlic, omega-3 fats/fish oil/flax oil, antioxidants, Ginkgo biloba, and popular weight loss diets. These trials have ranged in duration from 8 weeks to a year, with study outcomes that have included weight, blood lipids and lipoproteins, inflammatory markers, glucose, insulin, blood pressure and body composition. Most of these trials have been NIH-funded. The most impactful of these was an NIH funded weight loss diet study - DIETFITS (Diet Intervention Examining The Factors Interacting with Treatment Success) that involved randomizing 609 generally healthy, overweight/obese adults for one year to either a Healthy Low-Fat or a Healthy Low-Carb diet. The main findings were published in JAMA in 2018, and many secondary and exploratory analyses are in progress testing and generating follow-up hypotheses. In the past few years the long-term interests of my research group have shifted to include three additional areas of inquiry. One of these is Stealth Nutrition. The central hypothesis driving this is that in order for more effective and impactful dietary improvements to be realized, public health professionals need to consider adding non-health related approaches to their strategies toolbox. Examples would be the connections between food and 1) global warming and climate change, 2) animal rights and welfare, and 3) human labor abuses (e.g., slaughterhouses, agriculture fields, fast food restaurants). An example of my ongoing research in this area is a summer Food and Farm Camp run in collaboration with the Santa Clara Unified School District since 2011. Every year ~125 kids between the ages of 5-14 years come for 1-week summer camp sessions led by Stanford undergraduates and an Education Director to tend, harvest, chop, cook, and eat vegetables...and play because it is summer camp! The objective is to study the factors influencing the behaviors and preferences that lead to maximizing vegetable consumption in kids. A second area of interest and inquiry is institutional food. Universities, worksites, hospitals, and schools order and serve a lot of food, every day. If the choices offered are healthier, the consumption behaviors will be healthier. A key factor to success in institutional food is to make the food options "unapologetically delicious" a term I borrow from Greg Drescher, a colleague and friend at the Culinary Institute of America (the other CIA). Chefs are trained to make great tasting food, and chefs in institutional food settings can be part of the solution to improving eating behaviors. In 2015 I helped to initiate a Stanford-CIA collaboration that now ~70 universities that have agreed to collectively use their dining halls as living laboratories to study ways to maximize the synergy of taste, health and environmental sustainability (Menus of Change University Research Collaborative - MC-URC). If universities, worksites, hospitals and schools change the foods they serve, they will change the foods they order, and that kind of institutional demand can change agricultural practices - a systems-level approach to achieving healthier dietary behaviors. The third area is diet and the microbiome. Our lab has now partnered with the world renowned lab of Drs. Justin and Erica Sonnenburg at Stanford to conduct multiple human nutrition intervention studies that involve 1) dietary intervention, 2) microbiome characterization, and 3) outcomes related to inflammation and immune function. The most impactful of these studies was the Fe-Fi-Fo study (Fermented and Fiber-rich Foods) study published in Cell in 2021. In that 10-week intervention, study participants consuming more fermented foods increased their microbial diversity and decreased blood levels in almost 20 inflammatory markers. Our ongoing Maternal and Offspring Microbiome Study (MOMS) is examining the transfer of the maternal microbiome to the infant among 132 pregnant women randomized to increase fiber, or fermented food, or both or neither for their 2nd and 3rd trimester; the infants will be tracked for 18 months. My long-term vision in this area is to help create a world-class Stanford Food Systems Initiative and build on the idea that Stanford is uniquely positioned geographically, culturally, and academically, to address national and global crises in the areas of obesity and diabetes that are directly related to our broken food systems.
|
Josh Knowles Med: Prevention Research Cntr
Med: Prevention Research Cntr Last Updated: January 13, 2022 |
The overall theme of our research has been the genetic basis of cardiovascular disease across the continuum from Discovery to the development of Model Systems to the Translation of these findings to the clinic and most recently to the Public Health aspect of genetics. Currently our Discovery and basic translational efforts center on understanding the genetic basis of insulin resistance using genome wide association studies coupled advanced genetic analyses such as colocalization with exploration using in vitro and in vivo model systems including induced pluripotent stem cells and and gene editing screens.
|
Jodi Prochaska Med: Prevention Research Cntr
Med: Prevention Research Cntr Last Updated: February 02, 2024 |
Dr. Prochaska’s research program leverages technology to study and treat tobacco, alcohol, and other risk behaviors in populations at high risk. Her research spans community-based epidemiologic studies, randomized controlled clinical trials, and health policy analysis. Dr. Prochaska has conducted and collaborated on over 25 randomized controlled behavioral intervention trials, targeting tobacco and other risk behaviors with adolescents and adults.
|
Thomas Robinson Med: Prevention Research Cntr
Med: Prevention Research Cntr Last Updated: January 27, 2023 |
Stanford Solutions Science Lab. The Stanford Solutions Science Lab designs solutions to improve health and well-being of children, families, and the planet. Dr. Robinson originated the solution-oriented research paradigm. He is known for his pioneering obesity prevention and treatment research, including the concept of stealth interventions. His research applies social cognitive models of behavior change to behavioral, social, environmental and policy interventions for children and families in real world settings, making the results relevant for informing clinical and public health practice and policy. His research is largely experimental, conducting rigorous school-, family- and community-based randomized controlled trials. He studies obesity and disordered eating, nutrition, physical activity/inactivity and sedentary behavior, the effects of television and other screen time, adolescent smoking, aggressive behavior, consumerism, and behaviors to promote environmental sustainability. Rich longitudinal datasets of physical, physiological, psychological, behavioral, social, behavioral, and multi-omics measures are available from our many community-based obesity prevention and treatment trials in low-income and racial/ethnic minority populations of children and adolescents and their parents. Stanford Screenomics Lab - Human Screenome Project. People increasingly live their lives through smartphones. Our Stanford Screenomics app captures everything that people see and do on their smartphone screens – a record of digital life – by taking a screenshot every 5 seconds. The resulting sequence of screenshots, make up an individual’s screenome, an unique and dynamic sequence of exposures, thoughts, feelings, and actions. To date, we have collected more than 350 million screenshots from 6-12 months of phone use from national samples of about 500 hundred adults and adolescents and their parents. Opportunities available to study the screenome to understand digital media use and its impacts on health and behavior, develop novel diagnostics and prognostics from the screenome, and deliver precision interventions to improve health and well being. An opportunity to help build this paradigm-disrupting new science. |
PRISM mentor | Research Interests |
---|---|
Suzan Carmichael Maternal Fetal Medicine and Obstetrics
Maternal Fetal Medicine and Obstetrics Last Updated: July 13, 2022 |
Dr. Carmichael is a perinatal and nutritional epidemiologist and Professor of Pediatrics and Obstetrics and Gynecology at the Stanford University School of Medicine. Her research focuses on finding ways to improve maternal and infant health. Exposure themes include nutrition, social context, care, environmental contaminants and genetics. Outcome themes include severe maternal morbidity, stillbirth, birth defects, and preterm delivery. She is particularly interested in understanding the intersectionality of these varied types of exposures and outcomes and how they interact to impact health and health disparities, for the mother-baby dyad, in domestic as well as global health settings. She currently (mid 2020) has an opening in her lab for a post-doc focused on maternal health. |
SUZAN CARMICHAEL Maternal Fetal Medicine and Obstetrics
Maternal Fetal Medicine and Obstetrics Last Updated: January 29, 2023 |
Our team is committed to finding ways to improve maternal and infant health outcomes and equity by leading research that identifies effective leverage points for change, from upstream 'macro' social and structural factors, to downstream 'micro' clinical factors through a collaborative research approach that integrates epidemiologic approaches with community engagement and systems thinking. Disparities are prominent in maternal and infant health, so a lot of our work is centered on equity. Focusing on highest-risk groups will improve health for everyone. Much of our current research focuses on severe maternal morbidity (SMM). SMM encompasses adverse conditions that put pregnant people at risk of short and long-term consequences related to labor and delivery, including death. We also study other important perinatal outcomes, including stillbirth, preterm birth, structural congenital malformations and other maternal morbidities. We are interested in these outcomes individually, as well as in how they are connected to each other -- from a mechanistic standpoint (ie, do they share the same causes), and a lifecourse perspective (eg, how does an adverse newborn outcome affect the mom's postpartum health, and vice versa). Dr. Carmichael's training is in perinatal and nutritional epidemiology. She deeply appreciates her multi-disciplinary colleagues who make this work more meaningful by bringing their own varied perspectives and lived experiences, and their expertise in clinical care, qualitative and mixed methods, community engagement, and state-of-the-art epidemiologic approaches and biostatistical methods. |