Skip to content Skip to navigation

PRISM Mentors

Return to PRISM page

PRISM supports all faculty in recruiting postdocs. The faculty listed on this page have expressed special interest in the PRISM program and may be actively recruiting. This is one of many ways to identify potential postdoc mentors; also review the guidance and links in the PRISM Application Guide for other ways to explore Stanford faculty. As you look for potential postdoc mentors, consider how faculty research interests align with your own.

Faculty: to create a profile, click "Log In" at the top right corner, then the "PRISM Faculty Opt In" button below. To edit an existing profile, click "Log In" at the top right corner, then the "Edit" button under your name/department/URL.

 

Pediatrics
PRISM mentorsort ascending Research Interests

Danny Chou

Pediatrics
Assistant Professor
View in Stanford Profiles

Pediatrics

Last Updated: February 01, 2022

Our research program integrates concepts of chemical biology, protein engineering and structure biology to design new therapeutic leads and generate probes to study biological processes. A key focus of our lab is insulin, an essential hormone in our body to reduce blood glucose levels. We generate synthetic libraries of insulin analogs to select for chemical probes, and investigate natural insulin molecules (e.g. from the venom of fish-hunting cone snails!) to develop novel therapeutic candidates. We are especially interested in using chemical and enzymatic synthesis to create novel chemical entities with enhanced properties, and leverage the strong expertise of our collaborators to apply our skill sets in the fields of cancer biology, immunology and pain research. Our ultimate goal is to translate our discovery into therapeutic interventions in human diseases.

  • Diabetes, Endocrinology and Metabolism

Daniel Bernstein

Pediatrics
Professor and Associate Dean
View in Stanford Profiles

Pediatrics

Last Updated: February 01, 2023

Our lab has several major focuses:
1. Using iPSC-derived cardiomyocytes to develop a better understanding of hypertrophic cardiomyopathy and congenital heart disease.
2. The role of alterations in mitochondrial structure and function in normal physiology (such as exercise) and in disease such as dilated and hypertrophic cardiomyopathy.
3. Single cell analysis of mitochondrial function reveals significant heterogeneity.
4. Differences between right and left ventricular responses to stress and in their modes of failure, including gene expression and miR regulation.
5. Use of iPSC-CMs in pharmacogenomics, specifically determining the role of gene variants in doxorubicin cardiotoxicity.

Specific projects underway in our lab include:

1. Alterations of mitochondrial structure and function, including processes of mitofusion, mitofission, autophagy and mitophagy, in normal physiology and disease.

2. Development of high-throughput single cell imaging technologies to measure single cell mitochondrial function, and to measure single mitochondrial function to determine the role of heterogeneity in cell life-death decision-making.

3. Differences between the right and left ventricles in their responses to stresses such as increased afterload and increased preload, including gene expression and gene regulation by micro-RNAs. The use of plasma miRs as biomakers for RV failure.

4. Using patient-derived iPSC-cardiomyocytes to understand the mechanisms of cardiomyopathies common in children and to solve the genotype-phenotype conundrum in hypertrophic cardiomyopathy. The role of altered metabolism and mitochondrial function in hypertrophic cardiomyopathy.

5. Development of micro-engineered platforms for assessment of biomechanics of single iPSC-derived cardiomyocytes.

6. Developing tools to further mature hiPSC-CMs to more accurately recapitulate the mechanobiology of adult human CMS.

We also are interested in clinical heart failure and cardiac transplantation in children, specifically:

1. Understanding alterations in immune system function in patients with after implantation of a left ventricular assist device, Immune system biomarkers that predict adverse outcomes after pediatric VAD implantation.

2. Development of biomarkers for the detection and monitoring of post-transplant lymphoproliferative disorder in pediatric transplant patients.

  • Training in Myocardial Biology at Stanford (TIMBS)

Daniel Bernstein

Pediatrics
Professor and Associate Dean

Pediatrics

Last Updated: August 17, 2020

Our lab has several major foci:


1. Using iPSC-derived cardiomyocytes to develop a better understanding of hypertrophic cardiomyopathy and congenital heart disease.
2. The role of alterations in mitochondrial structure and function in normal physiology and in diseases such as dilated and hypertrophic cardiomyopathy.
3. Single cell analysis of mitochondrial function reveals significant heterogeneity.

 

Specific projects underway in our lab include:

1. Using CRISPR-edited iPSC-cardiomyocytes to understand the mechanisms of cardiomyopathies and to solve the genotype-phenotype conundrum in hypertrophic cardiomyopathy.

2. The role of altered metabolism and mitochondrial function in hypertrophic cardiomyopathy.

3. Alterations of mitochondrial structure and function, including processes of mitofusion, mitofission, autophagy and mitophagy, in normal physiology and disease.

4. Development of high-throughput single cell imaging technologies to measure single cell mitochondrial function, and to measure single mitochondrial function to determine the role of heterogeneity in cell life-death decision-making.

5. Development of micro-engineered platforms for assessment of biomechanics of single iPSC-derived cardiomyocytes.

 

We also are interested in clinical heart failure and cardiac transplantation in children, specifically:

1. Understanding alterations in immune system function in patients with after implantation of a left ventricular assist device, Immune system biomarkers that predict adverse outcomes after pediatric VAD implantation.

2. Understanding alterations in immune system function in children with heart failure before and after heart transplant.

3. Development of biomarkers for the detection and monitoring of post-transplant lymphoproliferative disorder in pediatric solid organ transplant patients.

  • Training in Myocardial Biology at Stanford (TIMBS)

Christin Kuo

Pediatrics
Assistant Professor
View in Stanford Profiles

Pediatrics

Last Updated: March 25, 2021

We study the development and function of specialized sensory and secretory cells in the lung called pulmonary neuroendocrine cells (PNECs). We apply genetic single cell labeling studies in vivo as well as single RNA sequencing to identify the molecular basis of their developmental migration and functional specialization.  We recently identified dozens of neuropeptides expressed by individual neuroendocrine cells and aim to understand the functional consequences of the secreted products and their targets both within the lung. We have collaborations with the thoracic team at Stanford Medical Center to investigate a spectrum of lung neuroendocrine tumors as well as pediatric lung diseases associated with abnormal PNECs. We welcome new members to or research team who enjoy working in a multidisciplinary, diverse, and collaborative research environment.

  • Stanford Training Program in Lung Biology

Casey Gifford

Pediatrics
Assistant Professor
View in Stanford Profiles

Pediatrics

Last Updated: May 31, 2024

The Gifford lab is focused on defining the complex genetic and molecular mechanisms that are necessary for faithful cardiovascular development and how perturbation of these mechanisms can lead to disease. We use both stem cell and rodent experimental models to:

  • characterize the cellular interactions involved in cardiovascular development
  • define the oligogenic mechanisms underlying congenital heart diseases, such as hypoplastic left heart syndrome and left ventricular noncompaction
  • explore the link between congenital heart disease and neurodevelopmental delay

We also collaborate closely with clinicians, for example on a project integrating cardiac imaging and genetic data to predict adverse cardiac outcomes. Ultimately, we hope to make personalized medicine a reality for those that suffer from CHD and associated comorbidities, such as autism.

Chemical Engineering
PRISM mentorsort ascending Research Interests

Danielle Mai

Chemical Engineering
Assistant Professor
View in Stanford Profiles

Chemical Engineering

Last Updated: January 28, 2023

Danielle Mai

Chemical Engineering
Assistant Professor
View in Stanford Profiles

Chemical Engineering

Last Updated: February 23, 2024

The Mai Research Group engineers biopolymers, which are the building materials of life. We seek to develop functional biomaterials and to enhance understanding in the physics of soft materials. Molecular-scale biopolymer design presents a unique opportunity to rationally design materials based on biomolecular templates. Moreover, biopolymer engineering incorporates the rich functional landscape of biological systems into responsive biomaterials. We are especially interested in connecting properties across multiple length scales (molecular, microscopic, macroscopic) using experimental methods. We integrate rational biomolecular design, biological and chemical synthesis, and multi-scale characterization techniques to engineer biopolymers with tunable mechanics, stimuli-responsive behavior, and self-healing properties. Initial research efforts address biological systems where deformation is significant, with specific project areas including: (i) muscle-mimetic materials from polypeptides, (ii) biolubricants from bottlebrush polymers, and (iii) selective filters from programmable hydrogels.

Chaitan Khosla

Chemical Engineering
Professor
View in Stanford Profiles

Chemical Engineering

Last Updated: August 12, 2020

My research interests lie at the interface between chemistry and biology. While ongoing research in my lab focuses on multiple problems, all of these efforts are motivated by the twin goals of shining light on fundamentally new molecular mechanisms in biology and leveraging these insights to address unmet challenges in human health. Two examples of ongoing research themes in my lab are outlined below:

I] Assembly-line biosynthesis of polyketide antibiotics: The primary objective of this longstanding research project in my lab is to understand the enzymatic mechanisms of assembly-line polyketide synthases (PKSs). Having defined the physical boundaries and chemical reactivity of individual domains and modules, our goal now is to understand these assembly lines as integrated metabolic systems. We also seek to understand the genetic mechanisms for extraordinary evolutionary diversification of this family of multifunctional enzymes.

II] Chemical approaches to understanding celiac disease pathogenesis: Over the past two decades, we have made significant contributions to an understanding of celiac disease (CeD) pathogenesis. Furthermore, at each step along the way, we have sought to translate these emerging molecular insights into enhanced disease management tools for CeD patients and their doctors, as illustrated by the translation of two experimental therapeutics from our lab into advanced preclinical/early clinical studies, and the translation of a biomarker discovered in our lab into CeD patients.
 

Chaitan Khosla

Chemical Engineering
Professor
View in Stanford Profiles

Chemical Engineering

Last Updated: July 13, 2022

Research in this laboratory focuses on problems where deep insights into enzymology and metabolism can be harnessed to improve human health.
For the past two decades, we have studied and engineered enzymatic assembly lines called polyketide synthases that catalyze the biosynthesis of structurally complex and medicinally fascinating antibiotics in bacteria. An example of such an assembly line is found in the erythromycin biosynthetic pathway. Our current focus is on understanding the structure and mechanism of this polyketide synthase. At the same time, we are developing methods to decode the vast and growing number of orphan polyketide assembly lines in the sequence databases.

For more than a decade, we have also investigated the pathogenesis of celiac disease, an autoimmune disorder of the small intestine, with the goal of discovering therapies and related management tools for this widespread but overlooked disease. Ongoing efforts focus on understanding the pivotal role of transglutaminase 2 in triggering the inflammatory response to dietary gluten in the celiac intestine.

Biomedical Data Sciences
PRISM mentorsort ascending Research Interests

Daniel Rubin

Biomedical Data Sciences
Professor of Biomedical Data Science, Radiology, and Medicine
View in Stanford Profiles

Biomedical Data Sciences

Last Updated: August 17, 2020

The QIAI lab focuses on cutting‐edge research at the intersection of imaging science and biomedical informatics, developing and applying AI methods to large amounts of medical data for biomedical discovery, precision medicine, and precision health (early detection and prediction of future disease). The lab develops novel methods in text and image analysis and AI, including multi-modal and multi-task learning, weak supervision, knowledge representation, natural language processing, and decision theory to tackle the challenges of leveraging medical Big Data. Our exciting work is bridging a spectrum of biomedical domains with multidisciplinary collaborations with top scientists at Stanford as well as with other institutions internationally. The QIAI lab provides a unique multidisciplinary environment for conducing innovative AI-based healthcare research with a strong record of scholarly publication and achievement. Core research topics in the laboratory include: (1) automated image annotation using unsupervised methods of processing associated radiology reports using word embeddings and related methods; (2) developing methods of analyzing longitudinal EMR data to predict clinical outcomes and best treatments, (3) creating multi-modal deep learning models integrating multi-dimensional EMR and other data to discover electronic phenotypes of disease, (4) developing AI models with noisy or sparse labels (weak supervision), and cross-modal, multi-task learning, and observational AI approaches, and (5) developing and implementing algorithms for distributed computation for training deep learning models that leverage multi-institutional data while avoiding the barriers to data sharing.

  • Stanford Cancer Imaging Training (SCIT) Program
Radiology
PRISM mentorsort ascending Research Interests

Daniel Rubin

Radiology
Professor of Biomedical Data Science, Radiology, and Medicine
View in Stanford Profiles

Radiology

Last Updated: August 17, 2020

The QIAI lab focuses on cutting‐edge research at the intersection of imaging science and biomedical informatics, developing and applying AI methods to large amounts of medical data for biomedical discovery, precision medicine, and precision health (early detection and prediction of future disease). The lab develops novel methods in text and image analysis and AI, including multi-modal and multi-task learning, weak supervision, knowledge representation, natural language processing, and decision theory to tackle the challenges of leveraging medical Big Data. Our exciting work is bridging a spectrum of biomedical domains with multidisciplinary collaborations with top scientists at Stanford as well as with other institutions internationally. The QIAI lab provides a unique multidisciplinary environment for conducing innovative AI-based healthcare research with a strong record of scholarly publication and achievement. Core research topics in the laboratory include: (1) automated image annotation using unsupervised methods of processing associated radiology reports using word embeddings and related methods; (2) developing methods of analyzing longitudinal EMR data to predict clinical outcomes and best treatments, (3) creating multi-modal deep learning models integrating multi-dimensional EMR and other data to discover electronic phenotypes of disease, (4) developing AI models with noisy or sparse labels (weak supervision), and cross-modal, multi-task learning, and observational AI approaches, and (5) developing and implementing algorithms for distributed computation for training deep learning models that leverage multi-institutional data while avoiding the barriers to data sharing.

  • Stanford Cancer Imaging Training (SCIT) Program

Daniel Bruce Ennis

Radiology
Associate Professor
View in Stanford Profiles

Radiology

Last Updated: February 23, 2024

Daniel Ennis (Ph.D.) is an Associate Professor in the Department of Radiology. As an MRI scientist for nearly twenty years, he has worked to develop advanced translational cardiovascular MRI methods for quantitatively assessing structure, function, flow, and remodeling in both adult and pediatric populations. He began his research career as a Ph.D. student in the Department of Biomedical Engineering at Johns Hopkins University during which time he formed an active collaboration with investigators in the Laboratory of Cardiac Energetics at the National Heart, Lung, and Blood Institute (NIH/NHLBI). Thereafter, he joined the Departments of Radiological Sciences and Cardiothoracic Surgery at Stanford University as a post doc and began to establish an independent research program with an NIH K99/R00 award focused on “Myocardial Structure, Function, and Remodeling in Mitral Regurgitation.” For ten years he led a group of clinicians and scientists at UCLA working to develop and evaluate advanced cardiovascular MRI exams as PI of several NIH funded studies. In 2018 he returned to Stanford Radiology and the Radiological Sciences Lab to bolster programs in cardiovascular MRI. He is also the Director of Radiology Research for the Veterans Administration Palo Alto Health Care System where he oversees a growing radiology research program.

Dan Spielman

Radiology
Professor
View in Stanford Profiles

Radiology

Last Updated: July 14, 2022

Dr. Spielman’s research is in the field of MRI, spectroscopy (MRS), and PET, with a focus on the development of new methods of imaging in vivo metabolism. Current projects include 13C MRS of hyperpolarized substrates for the assessment of glycolysis and oxidative phosphorylation in cancer, 1H MRS measurements brain oxidative stress and neurotransmission, and combined PET/MRS studies.  He has focused on a novel array of both acquisition and analysis techniques for use in preclinical and clinical studies.


Associated T32s: Stanford Center for Imaging Training (SCIT), Stanford Molecular Imaging Scholars (SMIS), Stanford Training in Biomedical Imaging Instrumentation (TBI2)

Craig Levin

Radiology
Professor
View in Stanford Profiles

Radiology

Last Updated: March 16, 2022

The research interests of the molecular imaging instrumentation lab are to create novel instrumentation and software algorithms for in vivo imaging of molecular signatures of disease in humans and small laboratory animals. These new cameras efficiently image radiation emissions in the form of positrons, annihilation photons, gamma rays, and/or light emitted from molecular contrast agents that were introduced into the body and distributed in the subject tissues. These contrast agents are designed to target molecular pathways of disease biology and enable imaging of these biological signatures in tissues residing deep within the body using measurements made from outside the body.

The goals of the instrumentation projects are to advance the sensitivity and spatial, spectral, and/or temporal resolutions, and to create new camera geometries for special biomedical applications. The computational modeling and algorithm goals are to understand the physical system comprising the subject tissues, radiation transport, and imaging system, and to provide the best available image quality and quantitative accuracy.

The work involves designing and building instrumentation, including arrays of position sensitive sensors, readout electronics, and data acquisition electronics, signal processing research, including creation of computer models, and image reconstruction, image processing, and data/image analysis algorithms, and incorporating these innovations into practical imaging devices.

The ultimate goal is to introduce these new imaging tools into studies of molecular mechanisms and treatments of disease within living subjects.

  • Cancer-Translational Nanotechnology Training Program (Cancer-TNT)
  • Multi-Disciplinary Training Program in Cardiovascular Imaging at Stanford
  • Stanford Cancer Imaging Training (SCIT) Program
  • Stanford Molecular Imaging Scholars (SMIS)
Med: Biomedical Informatics Research (BMIR)
PRISM mentorsort ascending Research Interests

Daniel Rubin

Med: Biomedical Informatics Research (BMIR)
Professor of Biomedical Data Science, Radiology, and Medicine
View in Stanford Profiles

Med: Biomedical Informatics Research (BMIR)

Last Updated: August 17, 2020

The QIAI lab focuses on cutting‐edge research at the intersection of imaging science and biomedical informatics, developing and applying AI methods to large amounts of medical data for biomedical discovery, precision medicine, and precision health (early detection and prediction of future disease). The lab develops novel methods in text and image analysis and AI, including multi-modal and multi-task learning, weak supervision, knowledge representation, natural language processing, and decision theory to tackle the challenges of leveraging medical Big Data. Our exciting work is bridging a spectrum of biomedical domains with multidisciplinary collaborations with top scientists at Stanford as well as with other institutions internationally. The QIAI lab provides a unique multidisciplinary environment for conducing innovative AI-based healthcare research with a strong record of scholarly publication and achievement. Core research topics in the laboratory include: (1) automated image annotation using unsupervised methods of processing associated radiology reports using word embeddings and related methods; (2) developing methods of analyzing longitudinal EMR data to predict clinical outcomes and best treatments, (3) creating multi-modal deep learning models integrating multi-dimensional EMR and other data to discover electronic phenotypes of disease, (4) developing AI models with noisy or sparse labels (weak supervision), and cross-modal, multi-task learning, and observational AI approaches, and (5) developing and implementing algorithms for distributed computation for training deep learning models that leverage multi-institutional data while avoiding the barriers to data sharing.

  • Stanford Cancer Imaging Training (SCIT) Program
Ped: Cardiology
PRISM mentorsort ascending Research Interests

Daniel Bernstein

Ped: Cardiology
Endowed Professor
View in Stanford Profiles

Ped: Cardiology

Last Updated: November 29, 2021

The Bernstein Lab has several major foci:
 

1. Using iPSC-derived cardiomyocytes to develop a better understanding of hypertrophic cardiomyopathy and congenital heart disease.
2. The role of alterations in mitochondrial structure and function in normal physiology and in diseases such as dilated and hypertrophic cardiomyopathy.
3. Single cell analysis of mitochondrial function reveals significant heterogeneity.

Specific projects underway in our lab include:

1. Using CRISPR-edited iPSC-cardiomyocytes to understand the mechanisms of cardiomyopathies and to solve the genotype-phenotype conundrum in hypertrophic cardiomyopathy.

2. The role of altered metabolism and mitochondrial function in hypertrophic cardiomyopathy.

3. Alterations of mitochondrial structure and function, including processes of mitofusion, mitofission, autophagy and mitophagy, in normal physiology and disease.

4. Development of high-throughput single cell imaging technologies to measure single cell mitochondrial function, and to measure single mitochondrial function to determine the role of heterogeneity in cell life-death decision-making.

5. Development of micro-engineered platforms for assessment of biomechanics of single iPSC-derived cardiomyocytes.

 

We also are interested in clinical heart failure and cardiac transplantation in children, specifically:

1. Understanding alterations in immune system function in patients with after implantation of a left ventricular assist device, Immune system biomarkers that predict adverse outcomes after pediatric VAD implantation.

2. Understanding alterations in immune system function in children with heart failure before and after heart transplant.

3. Development of biomarkers for the detection and monitoring of post-transplant lymphoproliferative disorder in pediatric solid organ transplant patients.
 

Possible T-32 Options Include:
Training in Myocardial Biology at Stanford (TIMBS)

  • Training in Myocardial Biology at Stanford (TIMBS)

Daniel Bernstein

Ped: Cardiology
Professor
View in Stanford Profiles

Ped: Cardiology

Last Updated: July 13, 2022

Our lab has several major interests: 1. Using CRISPR-edited hiPSC-derived cardiomyocytes to develop a better understanding of hypertrophic cardiomyopathy and congenital heart disease. 2. The role of alterations in mitochondrial structure and function in dilated and hypertrophic cardiomyopathy. 3. Single cell analysis of mitochondrial function and the effect of mitochondrial heterogeneity on cellular function. 4. Differences between right and left ventricular responses to stress and in their modes of failure, including gene expression and miR regulation of angiogenesis and mitochondrial function. 5. Use of iPSC-CMs in pharmacogenomics, specifically determining the role of gene variants in anthracycline cardiotoxicity.

  • Training in Myocardial Biology at Stanford (TIMBS)
Physics
PRISM mentorsort ascending Research Interests

Daniel Akerib

Physics
Professor
View in Stanford Profiles

Physics

Last Updated: February 23, 2024

Together with Tom Shutt, Dan works on the LUX and LZ dark matter experiments to search for dark matter in the form of Weakly Interacting Massive Particles, or WIMPs. The detectors use liquid xenon as a target medium in a time projection chamber, or TPC. The Large Underground Xenon (LUX) experiment is currently operating a 250-kg target in the former Homestake gold mine in the Black Hills of South Dakota. Preparations are underway at SLAC to design and build the 7-ton successor, known as LUX-ZEPLIN (LZ). The group is involved in many aspects of data analysis, detector design, xenon purification, control andreadout systems, and detector performance studies.

Craig Levin

Physics
Professor
View in Stanford Profiles

Physics

Last Updated: March 16, 2022

The research interests of the molecular imaging instrumentation lab are to create novel instrumentation and software algorithms for in vivo imaging of molecular signatures of disease in humans and small laboratory animals. These new cameras efficiently image radiation emissions in the form of positrons, annihilation photons, gamma rays, and/or light emitted from molecular contrast agents that were introduced into the body and distributed in the subject tissues. These contrast agents are designed to target molecular pathways of disease biology and enable imaging of these biological signatures in tissues residing deep within the body using measurements made from outside the body.

The goals of the instrumentation projects are to advance the sensitivity and spatial, spectral, and/or temporal resolutions, and to create new camera geometries for special biomedical applications. The computational modeling and algorithm goals are to understand the physical system comprising the subject tissues, radiation transport, and imaging system, and to provide the best available image quality and quantitative accuracy.

The work involves designing and building instrumentation, including arrays of position sensitive sensors, readout electronics, and data acquisition electronics, signal processing research, including creation of computer models, and image reconstruction, image processing, and data/image analysis algorithms, and incorporating these innovations into practical imaging devices.

The ultimate goal is to introduce these new imaging tools into studies of molecular mechanisms and treatments of disease within living subjects.

  • Cancer-Translational Nanotechnology Training Program (Cancer-TNT)
  • Multi-Disciplinary Training Program in Cardiovascular Imaging at Stanford
  • Stanford Cancer Imaging Training (SCIT) Program
  • Stanford Molecular Imaging Scholars (SMIS)

Chao-Lin Kuo

Physics
Professor
View in Stanford Profiles

Physics

Last Updated: February 23, 2024

Chao-Lin’s group use the most ancient light, the Cosmic Microwave Background (CMB) radiation, emitted when the universe was in its infancy to shed light on the question of how the universe began. Currently Chao-Lin's group are involved in a number of experiments such as BICEP/BICEP2/Keck Array and have been working hard on detecting primordial B-mode polarization. His group are involved in both he design and construction of instruments as well as the data analysis and theoretical interpretation.

Kavli Institute
PRISM mentorsort ascending Research Interests

Daniel Akerib

Kavli Institute
Professor
View in Stanford Profiles

Kavli Institute

Last Updated: February 23, 2024

Together with Tom Shutt, Dan works on the LUX and LZ dark matter experiments to search for dark matter in the form of Weakly Interacting Massive Particles, or WIMPs. The detectors use liquid xenon as a target medium in a time projection chamber, or TPC. The Large Underground Xenon (LUX) experiment is currently operating a 250-kg target in the former Homestake gold mine in the Black Hills of South Dakota. Preparations are underway at SLAC to design and build the 7-ton successor, known as LUX-ZEPLIN (LZ). The group is involved in many aspects of data analysis, detector design, xenon purification, control andreadout systems, and detector performance studies.

Chao-Lin Kuo

Kavli Institute
Professor
View in Stanford Profiles

Kavli Institute

Last Updated: February 23, 2024

Chao-Lin’s group use the most ancient light, the Cosmic Microwave Background (CMB) radiation, emitted when the universe was in its infancy to shed light on the question of how the universe began. Currently Chao-Lin's group are involved in a number of experiments such as BICEP/BICEP2/Keck Array and have been working hard on detecting primordial B-mode polarization. His group are involved in both he design and construction of instruments as well as the data analysis and theoretical interpretation.

Chemical and Systems Biology
PRISM mentorsort ascending Research Interests

Dan Jarosz

Chemical and Systems Biology
Associate Professor
View in Stanford Profiles

Chemical and Systems Biology

Last Updated: June 30, 2022

Protein self-assembly in evolution, disease, and development; Systems biology of aging;  Mutational robustness in cancer and pathogens; Quantitative analysis of evolving genotype-to-phenotoype maps. Epigenetic control of interspecies interactions.

Developmental Biology
PRISM mentorsort ascending Research Interests

Dan Jarosz

Developmental Biology
Associate Professor
View in Stanford Profiles

Developmental Biology

Last Updated: June 30, 2022

Protein self-assembly in evolution, disease, and development; Systems biology of aging;  Mutational robustness in cancer and pathogens; Quantitative analysis of evolving genotype-to-phenotoype maps. Epigenetic control of interspecies interactions.

Biochemistry
PRISM mentorsort ascending Research Interests

Dan Herschlag

Biochemistry
Professor
View in Stanford Profiles

Biochemistry

Last Updated: May 31, 2024

To understand biology, we need chemistry and physics as the physical and chemical properties of biomolecules enable and constrain what biology can do and how it has evolved. We are particularly interested in questions of: (i) how enzymes work; (ii) how RNA folds; (iii) how proteins recognize RNA; (iv) RNA/protein interactions in regulation and control; and (v) the evolution of molecules and molecular interactions. Our interdisciplinary approaches span and integrate physics, chemistry and biology, employ a wide range of techniques, and are question driven. We have new projects in each of the above areas as we:
• Pioneer high-throughput quantitative approaches to study enzymes—to address how an entire protein contributes to its function, how allosteric signals are propagated, how different human alleles affect function and/or stability, and ultimately how to design new enzymes (with Polly Fordyce);
• Work to understand the evolution of enzyme function and stability via functional, genome-scale analyses, and experimental evolutionary studies;
• Pioneer the determination of enzyme conformational ensembles—and linking these to function via novel “ensemble¬–function” studies;
• Develop a quantitative and predictive model for RNA tertiary folding thermodynamics and kinetics, building from the “RNA Reconstitution Model”;
• Provide the first quantitative and complete descriptions of the affinity and specificity of RNA binding proteins for all possible RNA sequences and structures (with Will Greenleaf);
• Pioneer Quantitative Cellular Biochemistry (QCB) to bring together the power of biochemistry and genomics to the study molecular interactions and function in cells, with the goal of providing quantitative and predictive models for molecular function and regulation in cells.

Electrical Engineering
PRISM mentorsort ascending Research Interests

Dan Congreve

Electrical Engineering
Assistant Professor
View in Stanford Profiles

Electrical Engineering

Last Updated: August 15, 2023

Nanoscale Materials to Solve Next Generation Challenges
The challenges facing us today are immense, and nanomaterials have shown great promise to aid in their solutions. Yet individual material systems often have significant drawbacks that prevent successful adaptation. We seek to unite material systems to build nanoscale systems where we control the flow of light, energy, and spin. By combining and understanding these material systems, we aim to uncover unique strengths and physics that are unachievable by individual systems alone, finding solutions to the challenging problems facing us.

See congrevelab.stanford.edu for more information!

Craig Levin

Electrical Engineering
Professor
View in Stanford Profiles

Electrical Engineering

Last Updated: March 16, 2022

The research interests of the molecular imaging instrumentation lab are to create novel instrumentation and software algorithms for in vivo imaging of molecular signatures of disease in humans and small laboratory animals. These new cameras efficiently image radiation emissions in the form of positrons, annihilation photons, gamma rays, and/or light emitted from molecular contrast agents that were introduced into the body and distributed in the subject tissues. These contrast agents are designed to target molecular pathways of disease biology and enable imaging of these biological signatures in tissues residing deep within the body using measurements made from outside the body.

The goals of the instrumentation projects are to advance the sensitivity and spatial, spectral, and/or temporal resolutions, and to create new camera geometries for special biomedical applications. The computational modeling and algorithm goals are to understand the physical system comprising the subject tissues, radiation transport, and imaging system, and to provide the best available image quality and quantitative accuracy.

The work involves designing and building instrumentation, including arrays of position sensitive sensors, readout electronics, and data acquisition electronics, signal processing research, including creation of computer models, and image reconstruction, image processing, and data/image analysis algorithms, and incorporating these innovations into practical imaging devices.

The ultimate goal is to introduce these new imaging tools into studies of molecular mechanisms and treatments of disease within living subjects.

  • Cancer-Translational Nanotechnology Training Program (Cancer-TNT)
  • Multi-Disciplinary Training Program in Cardiovascular Imaging at Stanford
  • Stanford Cancer Imaging Training (SCIT) Program
  • Stanford Molecular Imaging Scholars (SMIS)

Chelsea Finn

Electrical Engineering
Assistant Professor
View in Stanford Profiles

Electrical Engineering

Last Updated: January 28, 2023

Our lab is interested in the capability of robots and other agents to develop broadly intelligent behavior through learning and interaction. We work on robotics and machine learning, and we are affiliated with SAIL, the ML Group, the Stanford Robotics Center, and CRFM.

Surg: Otolaryngology
PRISM mentorsort ascending Research Interests

Daibhid O Maoileidigh

Surg: Otolaryngology
Assistant Professor
View in Stanford Profiles

Surg: Otolaryngology

Last Updated: August 15, 2023

I am a Theoretical Physicist by training and have been working on mathematical and computational modeling of biological systems since my PhD. My lab studies hearing and balance systems and is interested in how sensory signals are filtered, transduced, amplified, and transmitted to the brain. We have worked on the ear's mechanics, synaptic dynamics, and otoacoustic emissions and use experimental data to motivate and test our mathematical models. In collaborations with several experimental labs, we have helped explain their data and tested our mathematical models. Our work is highly interdisciplinary and sits at the intersection of many fields including physics, biology, mathematics, neuroscience, and engineering. At present, we are focusing on the sensory cells in hearing and balance systems and on auditory evoked potentials.

  • Clinician-scientist training program in otolaryngology
Ped: Critical Care Medicine
PRISM mentorsort ascending Research Interests

Cristina M. Alvira

Ped: Critical Care Medicine
Associate Professor
View in Stanford Profiles

Ped: Critical Care Medicine

Last Updated: July 14, 2022

In contrast to many other organs, a significant portion of lung development and growth occurs postnatally during the first decade of life. The immaturity of the lung after birth heightens its susceptibility to insults that can disrupt this developmental program, but also offers immature lung a greater capacity for repair and regeneration after injury. The main focus of the Alvira lung is to define developmental pathways that direct postnatal lung growth with the long-term goal of leveraging this knowledge to create new therapies to preserve lung development and promote repair in the setting of injury. Our lab uses genetically modified mouse models, human lung tissue, and single cell transcriptomics to define what makes the immature lung unique from the adult lung at the molecular and cellular level with a key focus on transcriptionally-distinct populations of lung endothelial, immune and mesenchymal cells.

Department URL:
https://med.stanford.edu/pediatrics.html

  • Stanford Training Program in Lung Biology
Bioengineering
PRISM mentorsort ascending Research Interests

Craig Levin

Bioengineering
Professor
View in Stanford Profiles

Bioengineering

Last Updated: March 16, 2022

The research interests of the molecular imaging instrumentation lab are to create novel instrumentation and software algorithms for in vivo imaging of molecular signatures of disease in humans and small laboratory animals. These new cameras efficiently image radiation emissions in the form of positrons, annihilation photons, gamma rays, and/or light emitted from molecular contrast agents that were introduced into the body and distributed in the subject tissues. These contrast agents are designed to target molecular pathways of disease biology and enable imaging of these biological signatures in tissues residing deep within the body using measurements made from outside the body.

The goals of the instrumentation projects are to advance the sensitivity and spatial, spectral, and/or temporal resolutions, and to create new camera geometries for special biomedical applications. The computational modeling and algorithm goals are to understand the physical system comprising the subject tissues, radiation transport, and imaging system, and to provide the best available image quality and quantitative accuracy.

The work involves designing and building instrumentation, including arrays of position sensitive sensors, readout electronics, and data acquisition electronics, signal processing research, including creation of computer models, and image reconstruction, image processing, and data/image analysis algorithms, and incorporating these innovations into practical imaging devices.

The ultimate goal is to introduce these new imaging tools into studies of molecular mechanisms and treatments of disease within living subjects.

  • Cancer-Translational Nanotechnology Training Program (Cancer-TNT)
  • Multi-Disciplinary Training Program in Cardiovascular Imaging at Stanford
  • Stanford Cancer Imaging Training (SCIT) Program
  • Stanford Molecular Imaging Scholars (SMIS)
Radiology-MIPS
PRISM mentorsort ascending Research Interests

Craig Levin

Radiology-MIPS
Professor
View in Stanford Profiles

Radiology-MIPS

Last Updated: March 16, 2022

The research interests of the molecular imaging instrumentation lab are to create novel instrumentation and software algorithms for in vivo imaging of molecular signatures of disease in humans and small laboratory animals. These new cameras efficiently image radiation emissions in the form of positrons, annihilation photons, gamma rays, and/or light emitted from molecular contrast agents that were introduced into the body and distributed in the subject tissues. These contrast agents are designed to target molecular pathways of disease biology and enable imaging of these biological signatures in tissues residing deep within the body using measurements made from outside the body.

The goals of the instrumentation projects are to advance the sensitivity and spatial, spectral, and/or temporal resolutions, and to create new camera geometries for special biomedical applications. The computational modeling and algorithm goals are to understand the physical system comprising the subject tissues, radiation transport, and imaging system, and to provide the best available image quality and quantitative accuracy.

The work involves designing and building instrumentation, including arrays of position sensitive sensors, readout electronics, and data acquisition electronics, signal processing research, including creation of computer models, and image reconstruction, image processing, and data/image analysis algorithms, and incorporating these innovations into practical imaging devices.

The ultimate goal is to introduce these new imaging tools into studies of molecular mechanisms and treatments of disease within living subjects.

  • Cancer-Translational Nanotechnology Training Program (Cancer-TNT)
  • Multi-Disciplinary Training Program in Cardiovascular Imaging at Stanford
  • Stanford Cancer Imaging Training (SCIT) Program
  • Stanford Molecular Imaging Scholars (SMIS)
Stanford Cancer Center
PRISM mentorsort ascending Research Interests

Craig Levin

Stanford Cancer Center
Professor
View in Stanford Profiles

Stanford Cancer Center

Last Updated: March 16, 2022

The research interests of the molecular imaging instrumentation lab are to create novel instrumentation and software algorithms for in vivo imaging of molecular signatures of disease in humans and small laboratory animals. These new cameras efficiently image radiation emissions in the form of positrons, annihilation photons, gamma rays, and/or light emitted from molecular contrast agents that were introduced into the body and distributed in the subject tissues. These contrast agents are designed to target molecular pathways of disease biology and enable imaging of these biological signatures in tissues residing deep within the body using measurements made from outside the body.

The goals of the instrumentation projects are to advance the sensitivity and spatial, spectral, and/or temporal resolutions, and to create new camera geometries for special biomedical applications. The computational modeling and algorithm goals are to understand the physical system comprising the subject tissues, radiation transport, and imaging system, and to provide the best available image quality and quantitative accuracy.

The work involves designing and building instrumentation, including arrays of position sensitive sensors, readout electronics, and data acquisition electronics, signal processing research, including creation of computer models, and image reconstruction, image processing, and data/image analysis algorithms, and incorporating these innovations into practical imaging devices.

The ultimate goal is to introduce these new imaging tools into studies of molecular mechanisms and treatments of disease within living subjects.

  • Cancer-Translational Nanotechnology Training Program (Cancer-TNT)
  • Multi-Disciplinary Training Program in Cardiovascular Imaging at Stanford
  • Stanford Cancer Imaging Training (SCIT) Program
  • Stanford Molecular Imaging Scholars (SMIS)
Cardiovascular Institute
PRISM mentorsort ascending Research Interests

Craig Levin

Cardiovascular Institute
Professor
View in Stanford Profiles

Cardiovascular Institute

Last Updated: March 16, 2022

The research interests of the molecular imaging instrumentation lab are to create novel instrumentation and software algorithms for in vivo imaging of molecular signatures of disease in humans and small laboratory animals. These new cameras efficiently image radiation emissions in the form of positrons, annihilation photons, gamma rays, and/or light emitted from molecular contrast agents that were introduced into the body and distributed in the subject tissues. These contrast agents are designed to target molecular pathways of disease biology and enable imaging of these biological signatures in tissues residing deep within the body using measurements made from outside the body.

The goals of the instrumentation projects are to advance the sensitivity and spatial, spectral, and/or temporal resolutions, and to create new camera geometries for special biomedical applications. The computational modeling and algorithm goals are to understand the physical system comprising the subject tissues, radiation transport, and imaging system, and to provide the best available image quality and quantitative accuracy.

The work involves designing and building instrumentation, including arrays of position sensitive sensors, readout electronics, and data acquisition electronics, signal processing research, including creation of computer models, and image reconstruction, image processing, and data/image analysis algorithms, and incorporating these innovations into practical imaging devices.

The ultimate goal is to introduce these new imaging tools into studies of molecular mechanisms and treatments of disease within living subjects.

  • Cancer-Translational Nanotechnology Training Program (Cancer-TNT)
  • Multi-Disciplinary Training Program in Cardiovascular Imaging at Stanford
  • Stanford Cancer Imaging Training (SCIT) Program
  • Stanford Molecular Imaging Scholars (SMIS)
Neuroscience Institute
PRISM mentorsort ascending Research Interests

Craig Levin

Neuroscience Institute
Professor
View in Stanford Profiles

Neuroscience Institute

Last Updated: March 16, 2022

The research interests of the molecular imaging instrumentation lab are to create novel instrumentation and software algorithms for in vivo imaging of molecular signatures of disease in humans and small laboratory animals. These new cameras efficiently image radiation emissions in the form of positrons, annihilation photons, gamma rays, and/or light emitted from molecular contrast agents that were introduced into the body and distributed in the subject tissues. These contrast agents are designed to target molecular pathways of disease biology and enable imaging of these biological signatures in tissues residing deep within the body using measurements made from outside the body.

The goals of the instrumentation projects are to advance the sensitivity and spatial, spectral, and/or temporal resolutions, and to create new camera geometries for special biomedical applications. The computational modeling and algorithm goals are to understand the physical system comprising the subject tissues, radiation transport, and imaging system, and to provide the best available image quality and quantitative accuracy.

The work involves designing and building instrumentation, including arrays of position sensitive sensors, readout electronics, and data acquisition electronics, signal processing research, including creation of computer models, and image reconstruction, image processing, and data/image analysis algorithms, and incorporating these innovations into practical imaging devices.

The ultimate goal is to introduce these new imaging tools into studies of molecular mechanisms and treatments of disease within living subjects.

  • Cancer-Translational Nanotechnology Training Program (Cancer-TNT)
  • Multi-Disciplinary Training Program in Cardiovascular Imaging at Stanford
  • Stanford Cancer Imaging Training (SCIT) Program
  • Stanford Molecular Imaging Scholars (SMIS)
Neurosurgery
PRISM mentorsort ascending Research Interests

Claudia K. Petritsch

Neurosurgery
Associate Professor
View in Stanford Profiles

Neurosurgery

Last Updated: May 31, 2024

THE PETRITSCH BRAIN TUMOR STEM CELL AND MODELS RESEARCH LAB

The Petritsch lab broadly investigates underlying causes for the intra-tumoral heterogeneity and immune suppression in brain tumors from a developmental neurobiology point of view. Defects in cell fate control could explain many key defects present in brain tumors and an understanding of how brain cells control the fate of their progeny may identify novel points of vulnerabilities to target with therapeutics. Of special emphasis, we study the establishment of cell fates within normal hierarchical brain lineages for comparison to the dysregulated cell-fate hierarchies seen in brain tumors. Our lab was the first to demonstrate that normal adult oligodendrocyte progenitor cells (OPCs) undergo asymmetric divisions to make cell fate decisions, i.e. to generate OPCs as well as differentiating cells each time they divide. Drawing from these data, we investigate whether brain tumors divide along hierarchical lineages and how oncogenic mutations might affect cell fate decisions within these hierarchies. A major line of investigation in our lab focuses on whether defects in the asymmetric division lead to aberrant cell fate decisions that cause the paradigm mixed-lineage phenotypes and the intra-tumoral heterogeneity present across tumors.

To study the interactions between tumor cells and the immune system, we have developed and utilized transplantable mouse glioma models. We are tasked to facilitate and coordinate the distribution of fresh tissue from the neurosurgery operating room and have access to fresh brain tissue from patient surgeries, from which we prepare cell culture models for brain tumors and normal progenitors. We complement our work with human cells with studies in genetically engineered mouse models of gliomagenesis to conduct molecular, cellular, and bioinformatic analyses.

Computer Science
PRISM mentorsort ascending Research Interests

Clark Barrett

Computer Science
Professor (Research)
View in Stanford Profiles

Computer Science

Last Updated: January 12, 2022

Automated reasoning; satisfiability modulo theories (SMT); formal methods; formal verification; verification of smart contracts; verification of neural networks; AI safety; hardware design productivity and verification.

Chelsea Finn

Computer Science
Assistant Professor
View in Stanford Profiles

Computer Science

Last Updated: January 28, 2023

Our lab is interested in the capability of robots and other agents to develop broadly intelligent behavior through learning and interaction. We work on robotics and machine learning, and we are affiliated with SAIL, the ML Group, the Stanford Robotics Center, and CRFM.

Mgmt Sci & Engineering
PRISM mentorsort ascending Research Interests

Chuck Eesley

Mgmt Sci & Engineering
Associate Professor
View in Stanford Profiles

Mgmt Sci & Engineering

Last Updated: August 11, 2020

My research focuses on the influence of the external environment on entrepreneurship. Specifically, I have sought to be a leader in investigating the types of environments that encourage the founding of high growth, technology-based firms. Although I build on previous work that focuses on individual characteristics, network ties, and strategy, my major contribution is to demonstrate that institutions matter. I have broken new ground in showing that effective institutional change influences who starts firms, not just how many firms are started. I have repeatedly studied entrepreneurship in a single country (China, Chile, Japan, and the U.S.) before and after a major institutional change. My work is divided into three streams: (1) formal institutions (policies and regulations), (2) university and industry environments, and (3) informal institutions (social movements).
STREAM 1: My research in this stream advances theory by introducing novel mechanisms (e.g. barriers to growth and failure, institutional inconsistency), introducing new concepts (e.g. skill adequacy and context relevance) and in theorizing that institutional changes that lower barriers to growth and to failure alter who becomes an entrepreneur, the type of firms, and performance.
STREAM 2: My work in this stream changes the way we think about team composition as well as what characteristics lead to venture performance by linking their impacts to industry environments.
STREAM 3: In this stream, I explored how social movement organizations can change firms.
My research changes the way we think about how the environment – formal institutions, informal institutions, and industry contexts – influences entrepreneurship. I am a leader in situating ventures within environments and showing that interactions between environments and entrepreneurs matter. I am among the first to argue and show that policies that foster high-growth entrepreneurship are different than those that spawn small businesses. If policy leaders wish to foster technology-based start-ups, then we must consider how institutions operate. My research shows that institutional changes can significantly influence the types of firms that are created, who creates them, and how they perform. My research challenges widely accepted ideas about entrepreneurship by highlighting taken-for-granted notions that are incomplete or misleading. My studies call into question the assumption that institutions that make it easier to start firms are unambiguously beneficial, and that experienced, diverse founding teams are always superior. My theoretical contributions include introducing such concepts as institutional barriers to growth, skill adequacy and context relevance. I lead the way in broadening our conception of entrepreneurship beyond the developed North American economies. I have contributed methodologically by (A) showing how to measure talent, (B) collecting data internationally, (C) using randomized field experiments, and (D) analyzing multi-industry databases with state-of-the-art statistics (instrumental variables, differences-in-differences). I have been a pioneer in overcoming the challenges of inferring causality, by finding changes that altered the landscape for entrepreneurship, along with collecting novel data in international settings. In future work, I plan to do more studies incorporating software development for data collection and digital platforms for randomized experiments focusing on issues related to strategic change and entrepreneurship training. 

  • Other

Charles Eesley

Mgmt Sci & Engineering
Associate Professor
View in Stanford Profiles

Mgmt Sci & Engineering

Last Updated: July 14, 2022

Our group's research interests center around entrepreneurship. We are particularly interested in policy and the institutional environment, entrepreneurs in emerging economies and entrepreneurship among historically under-represented populations. We also do some work on technology platforms to facilitate startups and refugee entrepreneurship.

Med: Prevention Research Cntr
PRISM mentorsort ascending Research Interests

Christopher Gardner

Med: Prevention Research Cntr
Professor

Med: Prevention Research Cntr

Last Updated: August 27, 2023

For the past 30 years most of my research has been focused on investigating the potential health benefits of various dietary components or food patterns, which have been explored in the context of randomized controlled trials in free-living adult populations. Some of the interventions have involved vegetarian diets, soy foods and soy food components, garlic, omega-3 fats/fish oil/flax oil, antioxidants, Ginkgo biloba, and popular weight loss diets. These trials have ranged in duration from 8 weeks to a year, with study outcomes that have included weight, blood lipids and lipoproteins, inflammatory markers, glucose, insulin, blood pressure and body composition. Most of these trials have been NIH-funded. The most impactful of these was an NIH funded weight loss diet study - DIETFITS (Diet Intervention Examining The Factors Interacting with Treatment Success) that involved randomizing 609 generally healthy, overweight/obese adults for one year to either a Healthy Low-Fat or a Healthy Low-Carb diet. The main findings were published in JAMA in 2018, and many secondary and exploratory analyses are in progress testing and generating follow-up hypotheses.

In the past few years the long-term interests of my research group have shifted to include three additional areas of inquiry. One of these is Stealth Nutrition. The central hypothesis driving this is that in order for more effective and impactful dietary improvements to be realized, public health professionals need to consider adding non-health related approaches to their strategies toolbox. Examples would be the connections between food and 1) global warming and climate change, 2) animal rights and welfare, and 3) human labor abuses (e.g., slaughterhouses, agriculture fields, fast food restaurants). An example of my ongoing research in this area is a summer Food and Farm Camp run in collaboration with the Santa Clara Unified School District since 2011. Every year ~125 kids between the ages of 5-14 years come for 1-week summer camp sessions led by Stanford undergraduates and an Education Director to tend, harvest, chop, cook, and eat vegetables...and play because it is summer camp! The objective is to study the factors influencing the behaviors and preferences that lead to maximizing vegetable consumption in kids.

A second area of interest and inquiry is institutional food. Universities, worksites, hospitals, and schools order and serve a lot of food, every day. If the choices offered are healthier, the consumption behaviors will be healthier. A key factor to success in institutional food is to make the food options "unapologetically delicious" a term I borrow from Greg Drescher, a colleague and friend at the Culinary Institute of America (the other CIA). Chefs are trained to make great tasting food, and chefs in institutional food settings can be part of the solution to improving eating behaviors. In 2015 I helped to initiate a Stanford-CIA collaboration that now ~70 universities that have agreed to collectively use their dining halls as living laboratories to study ways to maximize the synergy of taste, health and environmental sustainability (Menus of Change University Research Collaborative - MC-URC). If universities, worksites, hospitals and schools change the foods they serve, they will change the foods they order, and that kind of institutional demand can change agricultural practices - a systems-level approach to achieving healthier dietary behaviors.

The third area is diet and the microbiome. Our lab has now partnered with the world renowned lab of Drs. Justin and Erica Sonnenburg at Stanford to conduct multiple human nutrition intervention studies that involve 1) dietary intervention, 2) microbiome characterization, and 3) outcomes related to inflammation and immune function. The most impactful of these studies was the Fe-Fi-Fo study (Fermented and Fiber-rich Foods) study published in Cell in 2021. In that 10-week intervention, study participants consuming more fermented foods increased their microbial diversity and decreased blood levels in almost 20 inflammatory markers. Our ongoing Maternal and Offspring Microbiome Study (MOMS) is examining the transfer of the maternal microbiome to the infant among 132 pregnant women randomized to increase fiber, or fermented food, or both or neither for their 2nd and 3rd trimester; the infants will be tracked for 18 months.

My long-term vision in this area is to help create a world-class Stanford Food Systems Initiative and build on the idea that Stanford is uniquely positioned geographically, culturally, and academically, to address national and global crises in the areas of obesity and diabetes that are directly related to our broken food systems.

  • Cardiovascular Disease Prevention Training Program
Biology
PRISM mentorsort ascending Research Interests

Christopher Barnes

Biology
Assistant Professor
View in Stanford Profiles

Biology

Last Updated: July 22, 2022

We combine biophysical methods with in vivo approaches to understand how viruses such as HIV and SARS-CoV-2 infect host cells and elicit specific humoral immune responses. Our research will translate knowledge of the structural correlates of antibody-mediated neutralization of viruses into the rational development of highly protective antibodies. A related goal is the structure-based design of potent and stable immunogens for vaccination.

Christine Jacobs-Wagner

Biology
Professor
View in Stanford Profiles

Biology

Last Updated: December 02, 2021

The Jacobs-Wagner lab has two main research interests:

  1. They examine the general principles and spatiotemporal mechanisms by which bacterial cells replicate. Bacteria are infamous for their remarkable ability to proliferate. Yet, despite their medical and agricultural importance, little is known about how bacteria control and integrate their growth, cell morphogenesis and cell cycle functions. The Jacobs-Wagner lab addresses this fundamental question at all levels, from a systems-level perspective down to the physical mechanisms, using genetics and cutting-edge quantitative microscopy techniques. The primary model bacterial systems are Escherichia coli and Caulobacter crescentus. Microbiologists, physicists and individuals with expertise in quantitative biology are encouraged to contact us.
  2. Recently, the Jacobs-Wagner lab expanded their interests to the Lyme disease agent Borrelia burgdorferi, revealing unsuspected ways by which this pathogen grows and causes disease. Lyme disease is tick-born disease whose incidence and geographic distribution have rapidly increased over the years, in part due to climate change. The Jacobs-Wagner lab has developed genetic and cell biological tools as well as mass spectrometry and microscopy protocols to study this important human pathogen, from its unique cell biology to its pathogenesis. Individuals with expertise in microbial pathogenesis or immunology are encouraged to contact us.
     

Department URL:
https://biology.stanford.edu/

 

Structural Biology
PRISM mentorsort ascending Research Interests

Christopher Barnes

Structural Biology
Assistant Professor
View in Stanford Profiles

Structural Biology

Last Updated: July 22, 2022

We combine biophysical methods with in vivo approaches to understand how viruses such as HIV and SARS-CoV-2 infect host cells and elicit specific humoral immune responses. Our research will translate knowledge of the structural correlates of antibody-mediated neutralization of viruses into the rational development of highly protective antibodies. A related goal is the structure-based design of potent and stable immunogens for vaccination.

Chemistry
PRISM mentorsort ascending Research Interests

Chaitan Khosla

Chemistry
Professor
View in Stanford Profiles

Chemistry

Last Updated: August 12, 2020

My research interests lie at the interface between chemistry and biology. While ongoing research in my lab focuses on multiple problems, all of these efforts are motivated by the twin goals of shining light on fundamentally new molecular mechanisms in biology and leveraging these insights to address unmet challenges in human health. Two examples of ongoing research themes in my lab are outlined below:

I] Assembly-line biosynthesis of polyketide antibiotics: The primary objective of this longstanding research project in my lab is to understand the enzymatic mechanisms of assembly-line polyketide synthases (PKSs). Having defined the physical boundaries and chemical reactivity of individual domains and modules, our goal now is to understand these assembly lines as integrated metabolic systems. We also seek to understand the genetic mechanisms for extraordinary evolutionary diversification of this family of multifunctional enzymes.

II] Chemical approaches to understanding celiac disease pathogenesis: Over the past two decades, we have made significant contributions to an understanding of celiac disease (CeD) pathogenesis. Furthermore, at each step along the way, we have sought to translate these emerging molecular insights into enhanced disease management tools for CeD patients and their doctors, as illustrated by the translation of two experimental therapeutics from our lab into advanced preclinical/early clinical studies, and the translation of a biomarker discovered in our lab into CeD patients.
 

Chaitan Khosla

Chemistry
Professor
View in Stanford Profiles

Chemistry

Last Updated: July 13, 2022

Research in this laboratory focuses on problems where deep insights into enzymology and metabolism can be harnessed to improve human health.
For the past two decades, we have studied and engineered enzymatic assembly lines called polyketide synthases that catalyze the biosynthesis of structurally complex and medicinally fascinating antibiotics in bacteria. An example of such an assembly line is found in the erythromycin biosynthetic pathway. Our current focus is on understanding the structure and mechanism of this polyketide synthase. At the same time, we are developing methods to decode the vast and growing number of orphan polyketide assembly lines in the sequence databases.

For more than a decade, we have also investigated the pathogenesis of celiac disease, an autoimmune disorder of the small intestine, with the goal of discovering therapies and related management tools for this widespread but overlooked disease. Ongoing efforts focus on understanding the pivotal role of transglutaminase 2 in triggering the inflammatory response to dietary gluten in the celiac intestine.

Med: Infectious Diseases
PRISM mentorsort ascending Research Interests

Catherine Blish

Med: Infectious Diseases
Professor
View in Stanford Profiles

Med: Infectious Diseases

Last Updated: November 11, 2021

My lab is focused on understanding host-pathogen interactions with a particular focus on innate immune responses. We apply omics approaches to dissect these interactions, performing in vivo profiling and building in vitro systems to define host-pathogen interactions. We have a particular passion for understanding the mechanisms by which NK cells recognize and respond to pathogens. We currently have projects evaluating immunity to SARS-CoV-2, HIV, influenza, and tuberculosis.

Department URL:
https://medicine.stanford.edu/

  • Applied Genomics in Infectious Diseases
  • Molecular and Cellular Immunobiology
Genetics
PRISM mentorsort ascending Research Interests

Casey Gifford

Genetics
Assistant Professor
View in Stanford Profiles

Genetics

Last Updated: May 31, 2024

The Gifford lab is focused on defining the complex genetic and molecular mechanisms that are necessary for faithful cardiovascular development and how perturbation of these mechanisms can lead to disease. We use both stem cell and rodent experimental models to:

  • characterize the cellular interactions involved in cardiovascular development
  • define the oligogenic mechanisms underlying congenital heart diseases, such as hypoplastic left heart syndrome and left ventricular noncompaction
  • explore the link between congenital heart disease and neurodevelopmental delay

We also collaborate closely with clinicians, for example on a project integrating cardiac imaging and genetic data to predict adverse cardiac outcomes. Ultimately, we hope to make personalized medicine a reality for those that suffer from CHD and associated comorbidities, such as autism.

Pathology
PRISM mentorsort ascending Research Interests

Capucine Van Rechem

Pathology
Assistant Professor
View in Stanford Profiles

Pathology

Last Updated: November 29, 2021

Chromatin regulators are highly altered in diseases. Of interest, these proteins are easily targetable by drugs. Furthermore, the plasticity of epigenetic events makes them a powerful target for new therapeutic strategies and reversion of disease phenotype. Histone and DNA modifications influence many processes including transcription, replication, genomic stability and cell division, which are altered in diseases. Therefore, understanding the molecular basis of chromatin modifiers in both normal and pathological cells could help us frame new potential biomarkers and targeted therapies. My long-term interest lies in understanding the impact chromatin modifiers have on disease development and progression so that more optimal therapeutic opportunities can be achieved. My laboratory explores the direct molecular impact of chromatin-modifying enzymes during cell cycle progression, and characterizes the unappreciated and unconventional roles that these chromatin factors have on cytoplasmic function such as protein synthesis. By gaining molecular understanding into the mechanism of action of chromatin modifiers in normal and pathological cells, we will improve our basic knowledge and provide needed insights into new potential targeted therapies in diseases.

 

Department URL:
https://www.google.com/search?client=safari&rls=en&q=stanford+department+of+pathology&ie=UTF-8&oe=UTF-8

Capucine Van Rechem

Pathology
Assistant Professor
View in Stanford Profiles

Pathology

Last Updated: July 13, 2022

Chromatin regulators are highly altered in diseases. Of interest, these proteins are easily targetable by drugs. Furthermore, the plasticity of epigenetic events makes them a powerful target for new therapeutic strategies and reversion of disease phenotype. Histone and DNA modifications influence many processes including transcription, replication, genomic stability and cell division, which are altered in diseases. Therefore, understanding the molecular basis of chromatin modifiers in both normal and pathological cells could help us frame new potential biomarkers and targeted therapies. My long-term interest lies in understanding the impact chromatin modifiers have on disease development and progression so that more optimal therapeutic opportunities can be achieved. My laboratory explores the direct molecular impact of chromatin-modifying enzymes during cell cycle progression, and characterizes the unappreciated and unconventional roles that these chromatin factors have on cytoplasmic function such as protein synthesis. By gaining molecular understanding into the mechanism of action of chromatin modifiers in normal and pathological cells, we will improve our basic knowledge and provide needed insights into new potential targeted therapies in diseases.

Pages