Skip to content Skip to navigation

PRISM Mentors

Return to PRISM page

PRISM supports all faculty in recruiting postdocs. The faculty listed on this page have expressed special interest in the PRISM program and most are actively recruiting. As you look for potential postdoc mentors, consider how faculty research interests align with your own.

For an overview of how the Faculty Nomination/Selection process works, please view our Stanford PRISM Faculty Guide.

As a rule of thumb, we recommend starting with the faculty listed on this page and then expanding your search to other faculty across the university. This is not intended to be a comprehensive list of all faculty eligible to appoint postdocs through PRISM.

For School of Medicine faculty, browse SoM Departments or find details about individual faculty members in the School of Medicine via Community Academic Profiles (CAP).

For faculty outside of the School of Medicine, browse departments in the Natural SciencesEarth Sciences, or Engineering and find details about individual faculty members in these areas via Stanford Profiles.

Please check back often -- Faculty/Lab profiles may be added or edited throughout the application period. 

 

PRISM Faculty Opt-In   Displaying 201 - 250 of 495
PRISM mentor Research Interests

Alfredo Dubra

Ophthalmology
Associate Professor
View in Stanford Profiles


Last Updated: July 13, 2022

Our lab is part of the Byers Eye Institute and the Ophthalmology Department at Stanford University. We seek to develop novel retinal imaging technologies to improve the diagnosing and treatment of ocular, vascular, neurodegenerative and systemic diseases. Our work is motivated by the personal interactions with research study volunteers and patients that we have been fortunate to have worked with. We pursue this through a multidisciplinary approach that integrates optics, computer science, vision science, electrical engineering and other engineering disciplines, in a highly collaborative environment with clinical colleagues in our department.

Jeffrey Goldberg

Ophthalmology
Professor
View in Stanford Profiles


Last Updated: July 13, 2022

We work on the cellular and molecular basis of neuronal survival and axon growth relevant to neuroprotection and regeneration, and on differentiation and transplant relevant to neural development and cell replacement therapies. Using retinal ganglion cells, a type of CNS neuron, as our primary model system in vitro and in rodent models in vivo, we use diverse "omics" and discovery research, combined with hypothesis-driven experiments and novel techniques, to unveil the basis for neuronal development, integration, and regeneration in the visual system.

Yang Hu

Ophthalmology
Assistant Professor
View in Stanford Profiles


Last Updated: July 13, 2022

We are studying the molecular mechanisms of neurodegeneration and axon regeneration after CNS injury and neurological diseases, using retinal ganglion cell (RGC) and optic nerve in various optic neuropathies mouse models. Regenerative and neuroprotective therapies have long been sought for CNS neurodegenerative diseases but none have been found. That there is no curative neuroprotective or restorative therapy for neurodegeneration is a central challenge for human health. My lab focuses on the mechanisms responsible for neuronal degeneration and axon regeneration after injury or diseases with the goal of building on this understanding to develop effective combined strategies to promote neuroprotection and functional recovery.

Michael Kapiloff

Ophthalmology, Med: Cardiovascular Medicine
Associate Professor
View in Stanford Profiles


Last Updated: July 13, 2022

Specificity and efficacy in intracellular signal transduction can be conferred by the anchoring and co-localization of key enzymes and their upstream activators and substrate effectors by scaffold proteins. The Kapiloff lab investigates “signalosomes” formed by scaffold proteins, asking fundamental questions such as: 1) how are signalosomes constituted; 2) how are upstream signals integrated by signalosomes to regulate in a concerted manner downstream effectors; 3) what is the physiologic relevance of these signalosomes; and 4) can signalosomes be targeted in a clinically relevant manner so as to constitute new therapeutic strategies. In particular, the Kapiloff lab studies signaling within the myocardium and retina. Using a comprehensive approach that includes biochemistry, cell biology, and in vivo physiology, ongoing projects address the regulation of pathological cardiac remodeling and the effects of disease on retinal neurons.

  • Training in Myocardial Biology at Stanford (TIMBS)

Wendy Liu

Ophthalmology
Assistant Professor
View in Stanford Profiles


Last Updated: June 06, 2022

Mission:
Our mission is to understand the role of mechanosensation in the eye and how it relates to glaucoma.

Approach:
Our goal is to discover new strategies for treating glaucoma by understanding the mechanisms of mechanosensation in the eye. By combining human genetic analyses, in vitro molecular and electrophysiological approaches, and in vivo mouse models of glaucoma, we are currently studying the role of mechanosensitive ion channels in glaucoma.

Questions:
· What are the ion channels that mediate pressure sensing in the eye?
· What physiological roles do these channels play in the eye?
· Do these ion channels mediate the development of glaucoma and other ocular pathologies?

Techniques:
· in vitro electrophysiological recording  of ion channel activity
· in vitro optical imaging of ion channel activity
· in vitro mechanical stimulation of individual cells
· genetic manipulation of specific cell types
· mouse models of glaucoma

Quan Nguyen

Ophthalmology
Professor
View in Stanford Profiles


Last Updated: July 13, 2022

Throughout the decades, our team has dedicated to the conducts of innovative clinical trials and ocular imaging studies aimed to enhance our knowledge while bringing new therapeutic options for retinal vascular diseases, including age-related macular degeneration, diabetic retinopathy and diabetic macular edema, retinal vein occlusion and vaso-occlusive diseases, retinal degeneration as well as uveitic and ocular inflammatory diseases. Our efforts, often started with first-in-human trials, have led to the availability of VEGF-antagonists such as ranibizumab and aflibercept, interleukin inhibitors such as tocilizumab and sarilumab, and mTOR inhibitors such as sirolimus for many patients throughout the world. We have developed and perfected approaches to plan and execute effectively and economically multi-centered investigator-sponsored trials. We have also established teams that receive, process, and grade ocular images of the anterior and posterior segments and teams that coordinate the successful conducts of studies. Medical students, residents, fellows, and faculty members from around the globe, near and far, have joined our team to pursue our mission in enhancing the knowledge, diagnosis, and management of retinal and uveitic diseases through clinical research to preserve and improve vision for our patients. We are committed to the success of every team member.

Albert Wu

Ophthalmology, Stem Cell Bio Regenerative Med
Assistant Professor
View in Stanford Profiles


Last Updated: January 13, 2022

Our translational research laboratory endeavors to bring breakthroughs in stem cell biology and tissue engineering to clinical ophthalmology and reconstructive surgery. Over 6 million people worldwide are afflicted with corneal blindness, usually caused by chemical and thermal burns, ocular cicatricial pemphigoid, Stevens-Johnson syndrome, microbial infections, or chronic inflammation. These injuries often result in corneal vascularization, conjunctivalization, scarring, and opacification from limbal epithelial stem cell (LSC) deficiency (LSCD), for which there is currently no durable treatment.

The most promising cure for bilateral LSCD is finding an autologous source of limbal epithelial cells for transplantation. Utilizing recent advances in the field of induced pluripotent stem cells (iPSC), our research aims to create a reliable and renewable source of limbal epithelial cells for potential use in treating human eye diseases. These cells will be grown on resorbable biomatrices to generate stable transplantable corneal tissue. These studies will serve as the basis for human clinical trials and make regenerative medicine a reality for those with sight-threatening disease. On a broader level, this experimental approach could serve as a paradigm for the creation of other transplantable tissue for use throughout the body. Stem cell biology has the potential to influence every field of medicine and will revolutionize the way we perform surgery.

Nidhi Bhutani

Orthopedic Surgery
Assistant Professor
View in Stanford Profiles


Last Updated: July 13, 2022

Our research interests broadly encompass the molecular mechanisms regulating development, regeneration and repair with a focus on the epigenome. We are exploring epigenetic regulation in health and disease especially understanding (a) the dynamics of DNA methylation and demethylation and (b) the 3D chromatin organization. Another focus is stem cell biology and reprogramming approaches especially utilizing embryonic and induced pluripotent stem cells towards musculoskeletal regeneration and for age-associated diseases like Osteoarthritis. 

We are looking for highly creative and motivated postdoctoral fellows with a broad interest in Stem cell biology and Regenerative medicine. The specific research projects are focused on studying epigenetic regulation of skeletal diseases (cartilage and bone) and for understanding stem cell function in skeletal growth and regeneration. Another focus area is tissue engineering and generation of biomimetic 3D tissue models that reflect the endogenous complexity. Applicants must be PhD (cell, molecular or stem cell biology or bioengineering).

Peter Yang

Orthopedic Surgery, Materials Sci & Engineering, Bioengineering
Associate Professor
View in Stanford Profiles


Last Updated: July 13, 2022

Biomaterials, medical devices, drug delivery, stem cells and 3D bioprinting for musculoskeletal tissue engineering

Yunzhi Peter Yang

Orthopedic Surgery
Associate Professor
View in Stanford Profiles


Last Updated: July 14, 2022

Biomaterials, medical devices, drug delivery, stem cells and 3D bioprinting for musculoskeletal tissue engineering

Alan Cheng

Surg: Otolaryngology
Professor
View in Stanford Profiles


Last Updated: November 22, 2021

I am a surgeon-scientist with a clinical interest in caring for patients with hearing loss and deafness, and research interests in inner ear development and regeneration. For almost 20 years, I have been studying hair cell biology. Since 2007, my research has focused on defining the role of Wnt signaling in regulating hair cell progenitors in the developing and damaged inner ear using a combination of genetic, molecular biological, pharmacological, and imaging techniques. In particular, our work has led to the discovery of Wnt-responsive hair cell progenitors in the neonatal mouse cochlea and utricle, and more recently, functional recovery during vestibular regeneration.

Department URL:
https://med.stanford.edu/ohns.html

  • Clinician-scientist training program in otolaryngology

Teresa Nicolson

Surg: Otolaryngology
Professor
View in Stanford Profiles


Last Updated: November 29, 2021

Our research focuses on genetic forms of hearing loss and vestibular dysfunction. As many features of the auditory/vestibular system are highly conserved among vertebrates, we use zebrafish as our animal model and have identified over a dozen genes that are required for hearing and balance. Our studies have yielded important insights into the molecular basis of sensory hair-cell function, especially with regard to mechanotransduction and synaptic transmission. To understand the function of deafness genes and delve deeper into the underlying biology, our lab uses a wide range of methods to analyze mutant phenotypes including live cell imaging, physiological experiments, CRISPR gene editing, transcriptomic methods, and auditory/vestibular behavioral analyses.

Department URL:
https://med.stanford.edu/ohns.html

  • Clinician-scientist training program in otolaryngology

Eugene Butcher

Pathology
Professor
View in Stanford Profiles


Last Updated: July 13, 2022

We are interested in fundamental aspects of cell-cell recognition, migration and development with the mammalian immune and vascular systems as  models. We use molecular, genetic and single cell transcriptomic and mass cytometric approaches to study  the development and trafficking of  lymphocytes, NK cells and dendritic cells and their role in immune function in health and diseases. 
 
The vascular endothelium controls immune cell recruitment from the blood,  and thus determines the nature and magnitude of immune and inflammatory responses.     In a major new effort, we are applying single cell approaches (scRNAseq and mass cytometry), and novel computational approaches to probe endothelial cell specialization and responses in models of immune and tumor angiogenesis and inflammation.  
 
Although our focus is on fundamental problems in biology, the work is intrinsically translational and the laboratory is interested in applying its  discoveries to models of infection and immune pathology: examples include genetic studies of GPCR's and assessment of novel therapeutics in models of inflammatory bowel disease, psoriasis, cancer, aging and infection.
 
We are actively recruiting fellows with experience in biocomputation and coding who can take advantage of the datasets we are generating;   or experience in vascular biology, immunology,  imaging and cytometry.

Le Cong

Pathology, Genetics
Assistant Professor
View in Stanford Profiles


Last Updated: January 31, 2023

Dr. Cong's group is developing novel technology for genome editing and single-cell genomics, leveraging scalable methods inspired by data science and machine learning and artificial intelligence.

His group has a focus on using these gene-editing tools to study immunological and neurological diseases. His work has led to one of the first FDA-approved clinical trials using CRISPR/Cas9 gene-editing for in vivo gene therapy. More recently, his group invented tools for cleavage-free large gene insertion via mining microbial recombination protein (Wang et al. 2022), and developed single-cell perturbating - tracking approach for studying cancer immunology and neuro-immunology (Hughes et al. 2022). We have also strong interest in using deep learning for predicting and designing gene-editing system and protein function (Hughes et al. 2022 and Yuan et al. 2023). Dr. Cong is a recipient of the NIH/NHGRI Genomic Innovator Award, a Baxter Foundation Faculty Scholar, and has been selected by Clarivate Web of Science as a Highly Cited Researcher.

  • Institutional Training Grant in Genome Science

Dylan Dodd

Pathology, Microbiology and Immunology
Assistant Professor
View in Stanford Profiles


Last Updated: January 12, 2022

One of the key ways that the gut microbiome impacts human health is through the production of bioactive metabolites. By understanding how microbes produce these molecules, we aim to develop new approaches to promote human health and treat disease. Our laboratory employs bacterial genetics, metabolomics, and gnotobiotic mouse colonization to uncover the chemistry that underlies host-microbe interactions in the gut.

Andrew Fire

Pathology, Genetics
Professor
View in Stanford Profiles


Last Updated: July 13, 2022

Our lab studies the mechanisms by which cells and organisms respond to genetic change. The genetic landscape faced by a living cell is constantly changing. Developmental transitions, environmental shifts, and pathogenic invasions lend a dynamic character to both the genome and its activity pattern.We study a variety of natural mechanisms that are utilized by cells adapting to genetic change. These include mechanisms activated during normal development and systems for detecting and responding to foreign or unwanted genetic activity. At the root of these studies are questions of how a cell can distinguish "self" versus "nonself" and "wanted" versus "unwanted" gene expression. We primarily make use of the nematode C. elegans in our experimental studies. C. elegans is small, easily cultured, and can readily be made to accept foreign DNA or RNA. The results of such experiments have outlined a number of concerted responses that recognize (and in most cases work to silence) the foreign nucleic acid. One such mechanism ("RNAi") responds to double stranded character in RNA: either as introduced experimentally into the organism or as produced from foreign DNA that has not undergone selection to avoid a dsRNA response. Much of the current effort in the lab is directed toward a molecular understanding of the RNAi machinery and its roles in the cell. RNAi is not the only cellular defense against unwanted nucleic acid, and substantial current effort in the lab is also directed at identification of other triggers and mechanisms used in recognition and response to foreign information.

  • Institutional Training Grant in Genome Science
  • Molecular and Cellular Immunobiology
  • Training in Pediatric Nonmalignant Hematology and Stem Cell Biology

Michael Howitt

Pathology
Assistant Professor
View in Stanford Profiles


Last Updated: July 13, 2022

Our lab is broadly interested in how intestinal microbes shape our immune system to promote both health and disease. Recently we discovered that a type of intestinal epithelial cell, called tuft cells, act as sentinels stationed along the lining of the gut. Tuft cells respond to microbes, including parasites, to initiate type 2 immunity, remodel the epithelium, and alter gut physiology. Surprisingly, these changes to the intestine rely on the same chemosensory pathway found in oral taste cells. Currently, we aim to 1) elucidate the role of specific tuft cell receptors in microbial detection. 2) To understand how protozoa and bacteria within the microbiota impact host immunity. 3) Discover how tuft cells modulate surrounding cells and tissue.

  • Molecular and Cellular Immunobiology

Jon Long

Pathology
Assistant Professor
View in Stanford Profiles


Last Updated: July 13, 2022

Energy metabolism encompasses the fundamental homeostatic processes by which we regulate our energy storage and energy expenditure. Energy metabolism is highly dynamic and changes according to availability of nutrients, physical activity, or environmental conditions. Dysregulation of energy metabolism is a hallmark of many age-associated chronic diseases, including obesity, type 2 diabetes, dyslipidemias, neurodegeneration, and cancer. Therefore a complete understanding of the molecular pathways of energy metabolism represents an important basic scientific goal with implications for many of the most pressing biomedical problems of our generation. Metabolic tissues including adipose, liver, and muscle play critical roles in energy homeostasis. We are interested in understanding the dynamic endocrine signals that control metabolic tissue function. What are the identities of these signals? How do their levels change in response to physiologic energy stressors? Where are they made? What cell types or tissues do they act on? To answer these questions, we use chemical and mass spectrometry-based technologies as discovery tools. We combine these tools with classical biochemical and genetic techniques in cellular and animal models. Our goal is to discover new molecules and signaling pathways that regulate organismal energy metabolism. Recent studies from our laboratory have identified a family of cold-regulated lipid hormones that stimulate mitochondrial respiration as well as a thermogenic polypeptide hormone regulated by exercise. We suspect that many more remain to be discovered. We anticipate that our approach will uncover fundamental homeostatic mechanisms that control mammalian energy metabolism. In the long term, we hope to translate our discoveries into therapeutic opportunities that matter for metabolic and other age-associated chronic diseases.

  • Cardiovascular Disease Prevention Training Program
  • Diabetes, Endocrinology and Metabolism
  • Stanford Training Program in Aging Research
  • Training grant in academic gastroenterology

Jonathan Long

Pathology
Assistant Professor
View in Stanford Profiles


Last Updated: November 29, 2021

Our laboratory uses chemical and genetic approaches to study the signaling pathways that control mammalian energy homeostasis. We focus on blood-borne metabolic hormones and other hormone-like molecules. Ultimately, we seek to translate our discoveries into therapeutic opportunities that matter for obesity and other age-associated metabolic diseases.

  • Diabetes, Endocrinology and Metabolism

Stephen Montgomery

Pathology, Genetics
Associate Professor
View in Stanford Profiles


Last Updated: April 15, 2021

We are looking for postdoctoral researchers interested in understanding the impact of rare variants on human diseases. Projects in the lab are either computational and experimental (or both!). We are particularly interested in establishing new research directions for using genomics data to interpret undiagnosed rare diseases. We are also interested in helping to improve the use of genetic data in diverse populations. Great opportunities for networking also as many of the projects in our lab are often part of major genomics research consortium like the UDN, Mendelian Genomics Research Centres, MoTrPAC, GTEx, TOPMED, ENCODE and more!

Please check out our website and our recent list of papers on Google Scholar https://scholar.google.com/citations?user=117h3CAAAAAJ&hl=en

  • Institutional Training Grant in Genome Science
  • Stanford Training Program in Aging Research

Jonathan Pollack

Pathology
Professor
View in Stanford Profiles


Last Updated: January 12, 2022

Research in the Pollack lab centers on translational genomics, with a current focus on diseases of the prostate. The lab employs next-generation sequencing, single-cell genomics, genome editing, and cell/tissue-based modeling to uncover disease mechanisms, biomarkers and therapeutic targets. Current areas of emphasis include: (1) Defining molecular features of prostate cancer that distinguish indolent from aggressive disease; (2) Determining disease mechanisms and new therapeutic targets in benign prostatic hyperplasia (BPH); and (3) Defining disease drivers in rare neoplasms (e.g., ameloblastoma).

  • Cancer Etiology, Prevention, Detection and Diagnosis

Birgitt Schuele

Pathology
Associate Professor
View in Stanford Profiles


Last Updated: December 08, 2021

The Schuele lab works on gene discovery and novel stem cell technologies to generate stem cell models from patients with Parkinson’s disease and related disorders to understand the underlying causes of neurodegeneration. Our projects range from clinical genetic family studies and human stem cell modeling of neurocircuits to translational pre-clinical gene therapy studies in Parkinson’s disease.

Katrin Svensson

Pathology
Assistant Professor
View in Stanford Profiles


Last Updated: July 14, 2022

The Svensson Laboratory is dedicated to the discovery of new fundamental pathways that regulates cellular and organismal metabolism. The main focus is to identify novel functions for new molecules controlling the regulation of glucose and lipid homeostasis using a combination of genomic, proteomic and physiology approaches.

Capucine Van Rechem

Pathology
Assistant Professor
View in Stanford Profiles


Last Updated: July 13, 2022

Chromatin regulators are highly altered in diseases. Of interest, these proteins are easily targetable by drugs. Furthermore, the plasticity of epigenetic events makes them a powerful target for new therapeutic strategies and reversion of disease phenotype. Histone and DNA modifications influence many processes including transcription, replication, genomic stability and cell division, which are altered in diseases. Therefore, understanding the molecular basis of chromatin modifiers in both normal and pathological cells could help us frame new potential biomarkers and targeted therapies. My long-term interest lies in understanding the impact chromatin modifiers have on disease development and progression so that more optimal therapeutic opportunities can be achieved. My laboratory explores the direct molecular impact of chromatin-modifying enzymes during cell cycle progression, and characterizes the unappreciated and unconventional roles that these chromatin factors have on cytoplasmic function such as protein synthesis. By gaining molecular understanding into the mechanism of action of chromatin modifiers in normal and pathological cells, we will improve our basic knowledge and provide needed insights into new potential targeted therapies in diseases.

Capucine Van Rechem

Pathology
Assistant Professor
View in Stanford Profiles


Last Updated: November 29, 2021

Chromatin regulators are highly altered in diseases. Of interest, these proteins are easily targetable by drugs. Furthermore, the plasticity of epigenetic events makes them a powerful target for new therapeutic strategies and reversion of disease phenotype. Histone and DNA modifications influence many processes including transcription, replication, genomic stability and cell division, which are altered in diseases. Therefore, understanding the molecular basis of chromatin modifiers in both normal and pathological cells could help us frame new potential biomarkers and targeted therapies. My long-term interest lies in understanding the impact chromatin modifiers have on disease development and progression so that more optimal therapeutic opportunities can be achieved. My laboratory explores the direct molecular impact of chromatin-modifying enzymes during cell cycle progression, and characterizes the unappreciated and unconventional roles that these chromatin factors have on cytoplasmic function such as protein synthesis. By gaining molecular understanding into the mechanism of action of chromatin modifiers in normal and pathological cells, we will improve our basic knowledge and provide needed insights into new potential targeted therapies in diseases.

 

Department URL:
https://www.google.com/search?client=safari&rls=en&q=stanford+department+of+pathology&ie=UTF-8&oe=UTF-8

Ellen Yeh

Pathology, Microbiology and Immunology
Associate Professor


Last Updated: July 12, 2022

Environmental microbiology (e.g. diatoms, algae) and synthetic biology

Topics: Nitrogen fixation, lipid biosynthesis and transprot, cellular endosymbiosis, nonmodel organisms

Application areas: Fertilizers, Biofuels

Ellen Yeh

Biochemistry, Pathology, Microbiology and Immunology
Associate Professor
View in Stanford Profiles


Last Updated: July 14, 2022

The Yeh Lab studies the apicoplast, a unique plastid organelle in Plasmodium falciparum parasites that cause malaria. We are particularly focused on unbiased chemical and genetic screens to discover new cell biology and therapeutic targets for this important global health disease. Our work highlights the untapped opportunities in exploring divergent biology in non-model organisms, a theme we plan to expand in the lab by studying ocean algae (malaria's cousins!) and their role in the global ecosystem.

  • Molecular Basis of Host Parasite Interaction

Daniel Bernstein

Pediatrics
Professor and Associate Dean


Last Updated: August 17, 2020

Our lab has several major foci:


1. Using iPSC-derived cardiomyocytes to develop a better understanding of hypertrophic cardiomyopathy and congenital heart disease.
2. The role of alterations in mitochondrial structure and function in normal physiology and in diseases such as dilated and hypertrophic cardiomyopathy.
3. Single cell analysis of mitochondrial function reveals significant heterogeneity.

 

Specific projects underway in our lab include:

1. Using CRISPR-edited iPSC-cardiomyocytes to understand the mechanisms of cardiomyopathies and to solve the genotype-phenotype conundrum in hypertrophic cardiomyopathy.

2. The role of altered metabolism and mitochondrial function in hypertrophic cardiomyopathy.

3. Alterations of mitochondrial structure and function, including processes of mitofusion, mitofission, autophagy and mitophagy, in normal physiology and disease.

4. Development of high-throughput single cell imaging technologies to measure single cell mitochondrial function, and to measure single mitochondrial function to determine the role of heterogeneity in cell life-death decision-making.

5. Development of micro-engineered platforms for assessment of biomechanics of single iPSC-derived cardiomyocytes.

 

We also are interested in clinical heart failure and cardiac transplantation in children, specifically:

1. Understanding alterations in immune system function in patients with after implantation of a left ventricular assist device, Immune system biomarkers that predict adverse outcomes after pediatric VAD implantation.

2. Understanding alterations in immune system function in children with heart failure before and after heart transplant.

3. Development of biomarkers for the detection and monitoring of post-transplant lymphoproliferative disorder in pediatric solid organ transplant patients.

  • Training in Myocardial Biology at Stanford (TIMBS)

Daniel Bernstein

Pediatrics
Professor and Associate Dean
View in Stanford Profiles


Last Updated: February 01, 2023

Our lab has several major focuses:
1. Using iPSC-derived cardiomyocytes to develop a better understanding of hypertrophic cardiomyopathy and congenital heart disease.
2. The role of alterations in mitochondrial structure and function in normal physiology (such as exercise) and in disease such as dilated and hypertrophic cardiomyopathy.
3. Single cell analysis of mitochondrial function reveals significant heterogeneity.
4. Differences between right and left ventricular responses to stress and in their modes of failure, including gene expression and miR regulation.
5. Use of iPSC-CMs in pharmacogenomics, specifically determining the role of gene variants in doxorubicin cardiotoxicity.

Specific projects underway in our lab include:

1. Alterations of mitochondrial structure and function, including processes of mitofusion, mitofission, autophagy and mitophagy, in normal physiology and disease.

2. Development of high-throughput single cell imaging technologies to measure single cell mitochondrial function, and to measure single mitochondrial function to determine the role of heterogeneity in cell life-death decision-making.

3. Differences between the right and left ventricles in their responses to stresses such as increased afterload and increased preload, including gene expression and gene regulation by micro-RNAs. The use of plasma miRs as biomakers for RV failure.

4. Using patient-derived iPSC-cardiomyocytes to understand the mechanisms of cardiomyopathies common in children and to solve the genotype-phenotype conundrum in hypertrophic cardiomyopathy. The role of altered metabolism and mitochondrial function in hypertrophic cardiomyopathy.

5. Development of micro-engineered platforms for assessment of biomechanics of single iPSC-derived cardiomyocytes.

6. Developing tools to further mature hiPSC-CMs to more accurately recapitulate the mechanobiology of adult human CMS.

We also are interested in clinical heart failure and cardiac transplantation in children, specifically:

1. Understanding alterations in immune system function in patients with after implantation of a left ventricular assist device, Immune system biomarkers that predict adverse outcomes after pediatric VAD implantation.

2. Development of biomarkers for the detection and monitoring of post-transplant lymphoproliferative disorder in pediatric transplant patients.

  • Training in Myocardial Biology at Stanford (TIMBS)

Suzan Carmichael

Pediatrics, Maternal Fetal Medicine and Obstetrics
Professor
View in Stanford Profiles


Last Updated: July 13, 2022

Dr. Carmichael is a perinatal and nutritional epidemiologist and Professor of Pediatrics and Obstetrics and Gynecology at the Stanford University School of Medicine. Her research focuses on finding ways to improve maternal and infant health. Exposure themes include nutrition, social context, care, environmental contaminants and genetics. Outcome themes include severe maternal morbidity, stillbirth, birth defects, and preterm delivery. She is particularly interested in understanding the intersectionality of these varied types of exposures and outcomes and how they interact to impact health and health disparities, for the mother-baby dyad, in domestic as well as global health settings. She currently (mid 2020) has an opening in her lab for a post-doc focused on maternal health.

SUZAN CARMICHAEL

Pediatrics, Maternal Fetal Medicine and Obstetrics, Epidemiology and Population Health
PROFESSOR
View in Stanford Profiles


Last Updated: January 29, 2023

Our team is committed to finding ways to improve maternal and infant health outcomes and equity by leading research that identifies effective leverage points for change, from upstream 'macro' social and structural factors, to downstream 'micro' clinical factors through a collaborative research approach that integrates epidemiologic approaches with community engagement and systems thinking.

Disparities are prominent in maternal and infant health, so a lot of our work is centered on equity.  Focusing on highest-risk groups will improve health for everyone.

Much of our current research focuses on severe maternal morbidity (SMM). SMM encompasses adverse conditions that put pregnant people at risk of short and long-term consequences related to labor and delivery, including death.

We also study other important perinatal outcomes, including stillbirth, preterm birth, structural congenital malformations and other maternal morbidities.  We are interested in these outcomes individually, as well as in how they are connected to each other -- from a mechanistic standpoint (ie, do they share the same causes), and a lifecourse perspective (eg, how does an adverse newborn outcome affect the mom's postpartum health, and vice versa).

Dr. Carmichael's training is in perinatal and nutritional epidemiology.  She deeply appreciates her multi-disciplinary colleagues who make this work more meaningful by bringing their own varied perspectives and lived experiences, and their expertise in clinical care, qualitative and mixed methods, community engagement, and state-of-the-art epidemiologic approaches and biostatistical methods.

Danny Chou

Pediatrics
Assistant Professor
View in Stanford Profiles


Last Updated: February 01, 2022

Our research program integrates concepts of chemical biology, protein engineering and structure biology to design new therapeutic leads and generate probes to study biological processes. A key focus of our lab is insulin, an essential hormone in our body to reduce blood glucose levels. We generate synthetic libraries of insulin analogs to select for chemical probes, and investigate natural insulin molecules (e.g. from the venom of fish-hunting cone snails!) to develop novel therapeutic candidates. We are especially interested in using chemical and enzymatic synthesis to create novel chemical entities with enhanced properties, and leverage the strong expertise of our collaborators to apply our skill sets in the fields of cancer biology, immunology and pain research. Our ultimate goal is to translate our discovery into therapeutic interventions in human diseases.

  • Diabetes, Endocrinology and Metabolism

Agnieszka Czechowicz

Pediatrics, Stem Cell Bio Regenerative Med
Assistant Professor
View in Stanford Profiles


Last Updated: February 01, 2022

The lab's current research is aimed primarily at understanding how hematopoietic stem cells interact with their microenvironment in order to subsequently modulate these interactions to ultimately improve bone marrow transplantation and unlock biological secrets that further enable regenerative medicine broadly. We are primarily focused on studying the cell surface receptors on hematopoietic stem/progenitor cells and bone marrow stromal cells, and are actively learning how manipulating these can alter cell state and cell fate.  We have also pioneered several antibody-based conditioning methods that are at various stages of clinical development to enable safer stem cell transplantation.

There are many exciting opportunities that stem from this work across a variety of disease states ranging from rare genetic diseases, autoimmune diseases, solid organ transplantation, microbiome and cancer. While we are primarily focused on blood and immune diseases, the expanded potential of this work is much broader and can be applied to other organ systems as well and we are very eager to develop collaborations across disease areas. The Czechowicz lab hopes to further add in the field of translation research.

Goals
We aim to increase our understanding of the basic science principles that govern these cells and then exploit these findings to develop improved therapies for patients
We are particularly focused on pediatric non-malignant bone marrow transplantation with a strong interest in genetic blood/immune diseases and bone marrow failure, but do complementry work on solid tumors with marrow disease, solid organ tolerance induction, autoimmune diseases and gene therapy/gene editing.

  • Program in Translational and Experimental Hematology

Elizabeth Egan

Pediatrics, Microbiology and Immunology
Assistant Professor
View in Stanford Profiles


Last Updated: July 13, 2022

Malaria is one of the leading causes of childhood morbidity and mortality in the world. The etiologic agent of severe malaria, Plasmodium falciparum, exclusively infects red blood cells during the blood stage of its life cycle, when all of the symptoms of malaria occur. P. falciparum is an obligate intracellular parasite, suggesting that it critically depends on host factors for its biology and pathogenesis. This concept is also supported by population genetic studies, which indicate that humans have evolved certain red cell traits, such as hemoglobinopathies, to protect against malaria. The importance of these host-pathogen interactions raises the possibility that critical red cell factors could serve as targets for new, host-directed therapeutics for malaria. However, our understanding of host determinants for malaria is limited because red cells are enucleated and lack DNA, hindering genetic manipulation. In the Egan laboratory we have surmounted this hurdle by adapting advances from stem cell biology to the study of malaria host factors. Specifically, we have developed approaches to differentiate primary human CD34+ hematopoietic stem/progenitor cells down the erythroid lineage to enucleated red blood cells that can be infected by P. falciparum. This thus gives us access to the nucleated progenitor cells for genetic modification using RNAi and CRISPR-Cas9 genome editing. We are using these methods to develop forward genetic screens to identify novel host factors for malaria, as well as to perform mechanistic studies to understand the specific functions of critical host factors during the developmental cycle of malaria parasites. In addition, the lab has projects focused on understanding human adaptation to malaria using clinical samples. Our long term goal is to explore the possibility of host-directed therapeutics for malaria.

  • Molecular Basis of Host Parasite Interaction
  • Training in Pediatric Nonmalignant Hematology and Stem Cell Biology

Heidi Fedlman

Pediatrics
Professor
View in Stanford Profiles


Last Updated: July 13, 2022

My research focuses on the neurobiological basis of language, reading, and cognition in children.  Functional imaging studies demonstrate that language and reading skills require the integrated activity of a network of distributed brain regions.  Diffusion magnetic resonance imaging (dMRI) documents that variations in the properties of long-range white matter pathways connecting these brain regions within the cerebrum and between the cerebrum and cerebellum are associated with variations in language and reading skills.  These white matter pathways may be disturbed in childhood illnesses, such as brain tumors. We have been collecting dMRI scans on children born preterm and full term at different ages, including infancy.  We also have been collecting clinical scans on children with brain tumors in the cerebellum and posterior fossa. We seek students who want to learn techniques for analyzing dMRI and related imaging methods in children and to link the neurobiological findings to clinical outcomes.  Selected studies include: (1) analyzing white matter pathways in preterm infants at near term age in relation to medical and environmental variables; (2) applying spherical deconvolution to scans of children age 6 to 8 years who are learning to read; (3) evaluating longitudinal change in children with mutism after resection of a posterior fossa brain tumor.

Casey Gifford

Pediatrics, Genetics
Assistant Professor
View in Stanford Profiles


Last Updated: April 27, 2021

The Gifford lab is focused on defining the complex genetic and molecular mechanisms that are necessary for faithful cardiovascular development and how perturbation of these mechanisms can lead to disease. We use both stem cell and rodent experimental models to:

  • characterize the cellular interactions involved in cardiovascular development
  • define the oligogenic mechanisms underlying congenital heart diseases, such as hypoplastic left heart syndrome and left ventricular noncompaction
  • explore the link between congenital heart disease and neurodevelopmental delay

We also collaborate closely with clinicians, for example on a project integrating cardiac imaging and genetic data to predict adverse cardiac outcomes. Ultimately, we hope to make personalized medicine a reality for those that suffer from CHD and associated comorbidities, such as autism.

Anna Gloyn

Pediatrics, Genetics
Professor
View in Stanford Profiles


Last Updated: January 29, 2022

We aim to understand the genetic basis of diabetes and related metabolic conditions and to use this to leverage a better understanding of what causes diabetes and how we can improve treatment options for patients. Our work is predominantly focused on understanding what causes pancreatic islets to release insufficient insulin to control blood glucose levels after a meal in patients with type 2 diabetes, but often extends to efforts to relate this to metabolic dysfunction in other relevant tissues such as fat and liver.

We are an inter-disciplinary team of basic and clinical scientists with shared interests in using molecular genetics as a tool to uncover novel biology. We use a variety of different approaches to address important challenges in the field, which range from studies that work genome wide to those which are focused on specific genes and even precise nucleotide changes to understand their impact on pancreatic islet biology.

We have developed a series of pipelines that use primary human islets and authentic beta-cell models which allow us to generate and then integrate complex genomic, transcriptomic and cellular datasets. We use state-of-the art genome engineering approaches combined with induced pluripotent stem-cells to study the impact of T2D-associated genetic variants on islet cell development and function. We are also funded to investigate the impact of T2D risk variants on pancreatic beta-cell function in vivo.

We are a highly collaborative team and work with multiple national and international consortia involved in efforts to understand the genetic basis of type 2 diabetes (eg DIAGRAM, NIDDK Funded Accelerated Medicines Partnership) and related glycaemic traits (MAGIC). We are also part of several Innovative Medicines Initiatives (IMIs) efforts including STEMBANCC and RHAPSODY and Horizon 2020 initiatives (eg T2DSYSTEMS), which are working to develop tools and frameworks to capitalize on genetic and genomic data.

We are also part of the NIDDK funded Human Islet Research Network (HIRN) where we play a role in two of their initiatives. The Human Pancreas Atlas Program- T2 (HPAP-T2D) and the Integrated Islet Phenotype Program (IIPP). Our role is to support the genetic and genomic characterization of islets which are distributed for research and to support the genomic characterization of the pancreas’ phenotyped within the HPAP-T2D program.

Our work extends to playing a role in the interpretation of genetic variants identified in genes with known roles in monogenic forms of diabetes. We are part of the Clin Gen Expert Review Panel for Monogenic Diabetes where are expertise contributes to interpretation of coding alleles in glucokinase (GCK) and Hepatocyte Nuclear Factor 1 alpha (HNF1A). We are a number of on-going projects which are supporting efforts to better understand how to use exome-sequencing data in a diagnostic setting.

  • Diabetes, Endocrinology and Metabolism
  • Institutional Training Grant in Genome Science

Maria Grazia Roncarolo

Pediatrics, Med: Bone Marrow Transplant, Stem Cell Bio Regenerative Med
Professor
View in Stanford Profiles


Last Updated: July 13, 2022

Roncarolo laboratory is exploring the basic biology and translational applications of human type 1 regulatory cells (Tr1). We are using engineered Tr1, ex vivo Tr1, and alloantigen-specific Tr1 to uncover the molecular frameworks that govern Tr1 identity, differentiation and function. We are also translating Tr1 into the clinic. First, Tr1 can be used as a supportive cell therapy to enhance stem cell engraftment and immune reconstitution after hematopoietic stem cell transplantation (HSCT). Alloantigen-specific Tr1, designed to prevent graft-vs-host disease (GvHD) after allogeneic HSCT, are already being tested in a phase I/II clinical trial (NCT03198234). Second, we are investigating the mechanisms of action and clinical potential of the engineered Tr1 called CD4(IL-10) or LV-10, generated by lentiviral transduction of CD4 T cells with IL10 gene. Besides their immunosuppressive and anti-GvHD properties, LV-10 lyse primary acute myeloid leukemia (AML) cells and delay myeloid leukemia progression in vivo. We are exploring LV-10 as a novel cell immunotherapy for AML. Finally, we are interested in curing inborn errors of immunity by stem cell transplantation or autologous stem cell gene correction. We are testing a gene editing strategy to correct pathogenic mutations in IL10 and IL10 receptor genes, which cause severe and debilitating VEO-IBD (very early onset inflammatory bowel disease) in infants and young children.

  • Training in Pediatric Nonmalignant Hematology and Stem Cell Biology

Mark A. Kay

Pediatrics
Professor
View in Stanford Profiles


Last Updated: November 09, 2021

The Kay lab is interested in Gene Transfer, Genome Editing and Non-coding RNA biology.  The current research is studying: 1) rAAV vectors specifically:   developing capsid libraries, chemical modification of  vectors and screening approaches that will provide improved vectors for human application;  molecular mechanism of discordance in vector transduction between species;  molecular mechanisms involved in AAV transduction;  and chromatin formation of gene transfer vector genomes in primary tissues. 2) Approaches to achieve therapeutic levels of  non-nuclease mediated genome editing using rAAV vectors.  3)  Non coding RNAs: association between long-non coding RNAs and miRNA biogenesis in whole tissues;  tRNA derived small RNAs and their role in regulating ribosome biogenesis in cancer; and role of Line1 structural RNAs in controlling gene expression.

  • Institutional Training Grant in Genome Science

Christin Kuo

Pediatrics
Assistant Professor
View in Stanford Profiles


Last Updated: March 25, 2021

We study the development and function of specialized sensory and secretory cells in the lung called pulmonary neuroendocrine cells (PNECs). We apply genetic single cell labeling studies in vivo as well as single RNA sequencing to identify the molecular basis of their developmental migration and functional specialization.  We recently identified dozens of neuropeptides expressed by individual neuroendocrine cells and aim to understand the functional consequences of the secreted products and their targets both within the lung. We have collaborations with the thoracic team at Stanford Medical Center to investigate a spectrum of lung neuroendocrine tumors as well as pediatric lung diseases associated with abnormal PNECs. We welcome new members to or research team who enjoy working in a multidisciplinary, diverse, and collaborative research environment.

  • Stanford Training Program in Lung Biology

Henry Lee

Pediatrics
Associate Professor
View in Stanford Profiles


Last Updated: August 07, 2020

We are seeking an individual for a postdoctoral fellowship in perinatal / neonatal health who has training and experience in epidemiology or a related field (e.g. PhD or MD with relevant research training). The primary mentor is Dr. Henry C. Lee, Associate Professor of Pediatrics (Neonatology), and Chief Medical Officer of the California Perinatal Quality Care Collaborative (CPQCC) . The CPQCC and its sister organization, the California Maternal Quality Care Collaborative (CMQCC) have their data centers and leadership based at the division of neonatology at Stanford, and have active research programs in perinatal health. The ability to link maternal, neonatal, and long-term follow-up data allow for opportunities to conduct large population-based epidemiologic studies, health services research, and work in reducing disparities. The emphasis of this fellowship will be on the population of extremely preterm birth, including prediction / modeling of outcomes for periviable infants, and development of tools for counseling families affected by extremely preterm birth. The postdoctoral fellow will collaborate with epidemiologists, biostatisticians, and clinician-scientists, with opportunities for mentorship and collaborative research on related topics.

Alison Marsden

Pediatrics, Bioengineering, Mechanical Engineering, Institute for Computational and Mathematical Engineering, Cardiovascular Med Institute
Associate Professor
View in Stanford Profiles


Last Updated: August 09, 2020

The Cardiovascular Biomechanics Computation Lab  develops fundamental computational methods for the study of cardiovascular disease progression, surgical methods, treatment planning and medical devices.  We focus on patient-specific modeling in pediatric and congenital heart disease, as well as adult cardiovascular disease.  Our lab bridges engineering and medicine through the departments of Pediatrics, Bioengineering, and the Institute for Computational and Mathematical Engineering. We develop the SimVascular open source project.

  • Mechanisms in Innovation in Vascular Disease
  • Multi-Disciplinary Training Program in Cardiovascular Imaging at Stanford

Marlene Rabinovitch

Pediatrics
Professor


Last Updated: April 22, 2021

The laboratory of Dr. Marlene Rabinovitch, Professor of Pediatrics (Cardiology) is seeking a highly-motivated and accomplished postdoctoral scholar to join their team of investigators  in conjunction with the Basic Science and Engineering (BASE) Initiative  of the Children’s Heart Center at Stanford University.

A successful applicant will be immersed in cutting-edge molecular, sequencing, imaging and high throughput ‘omics’  technologies applied to human vascular and immune cells  and in their application  to mouse and rat models of  human vascular disease with a focus on pulmonary arterial hypertension.  Our research interests relate to the impact of metabolic reprogramming on gene regulation and RNA translation, the impact of changes in shear stress and DNA damage on the epigenome, bioengineering blood vessels, immune and vascular cell interactions .  We incorporate transgenic models of disease, iPSC generated vascular and immune cells, gene editing, high-throughput drug testing, single cell RNA Sequencing and high dimensional single cell mapping of tissues.  Please consult our website for more details.

All our projects offer opportunities for co-mentoring in Basic, Engineering and Cardiovascular Science.

Sushma Reddy

Pediatrics
Associate Professor of Pediatrics
View in Stanford Profiles


Last Updated: January 27, 2023

Current Research and Scholarly Interests
My laboratory's overall goal is to (i) understand the mechanisms of right heart failure in children and adults with congenital heart disease and (ii) to develop biomarkers as a plasma signature of myocardial events to better understand the mechanisms of heart failure, improve monitoring of disease progression, early detection of heart failure and risk-stratification.

We have focused on tetralogy of Fallot population and single ventricle heart disease. As the survival continues to improve, so also has the incidence of heart failure. However, the underlying cellular mechanisms of heart failure are poorly understood as a result of which no targeted therapy is available. Since it is not possible to obtain heart muscle biopsies routinely on patients, we have taken a novel strategy of using Multi-Omics to better understand disease mechanisms and to follow patients over time comparing their Omics signature to themselves thereby personalizing their care. The goal is to create a targeted biomarker panel for clinical utility to be used in conjunction with imaging data to improve overall prediction of risk. Based on our work to date, we are also interested in understanding myocardial mitochondrial and vascular dysfunction as these have the potential to serve as novel therapeutic targets.

Kathleen Sakamoto

Pediatrics
Professor
View in Stanford Profiles


Last Updated: July 13, 2022

My research focuses on studying normal and aberrant blood cell development. We are interested in understanding the pathogenesis of acute leukemia and bone marrow failure syndromes. We also work with medicinal chemists and computational biologists to develop novel therapies to treat these diseases.

Kathleen Sakamoto

Pediatrics
Professor of Pediatrics
View in Stanford Profiles


Last Updated: January 12, 2022

The Sakamoto lab studies normal and aberrant blood cell development. Her research team is interested in the pathogenesis of acute and chronic leukemia, including acute myeloid leukemia and chronic myeloid leukemia. The overall goal of her research is to understand the signaling pathways that lead to leukemia or bone marrow failure. She is also interested in developing new drugs to treat these diseases. Her group experience works with mammalian cells and mouse models of cancer and bone marrow failure syndromes, such as Diamond Blackfan Anemia. There are opportunities to work with physicians, translational researchers, medicinal chemists, and advisors from drug companies with experience in drug development.

Experiments utilize leukemia cell lines, primary mouse and human hematopoietic cells, and mouse models will be used.   Technologies in the lab include standard biochemical techniques (Western blot analysis, real-time PCR, immunoprecipitations), FACs/sorting, colony assays, lentiviral and retroviral transductions, transplantation experiments, xenograft models and bioluminescence, CyTOF, RNA-seq ,ChIP-seq, small molecule and  shRNA/CRISPR library screening. Knowledge in bioinformatics would be helpful for single cell RNA-seq experiments. The intent of these early translational studies is to develop small molecules or peptides into drugs to treat acute leukemia.  Assays to assess toxicity, metabolism, optimization, and mechanism of action of compounds are performed.

Dr. Sakamoto is committed to diversity and has trained many underrepresented high school, undergraduate, medical, graduate students and postdoctoral/MD fellows. She has served on the American Society of Hematology Minority Medical Student Program and was Chair of the Diversity Special Interest Group. She is currently working with SMASH Rising to recruit underrepresented high school graduates and community college students to Stanford to study clinical, translational, and basic hematology. 

 

  • Training in Pediatric Nonmalignant Hematology and Stem Cell Biology

Jason Yeatman

Pediatrics, Graduate School of Education
Assistant Professor
View in Stanford Profiles


Last Updated: August 10, 2020

Mission: Our mission is to both use neuroscience as a tool for improving education, and use education as a tool for furthering our understanding of the brain. On the one hand, advances in non-invasive, quantitative brain imaging technologies are opening a new window into the mechanisms that underlie learning. For children with learning disabilities such as dyslexia, we hope to develop personalized intervention programs that are tailored to a child’s unique pattern of brain maturation. On the other hand, interventions provide a powerful tool for understanding how environmental factors shape brain development. Combining neuroimaging with educational interventions we hope to further our understanding of plasticity in the human brain.
The Lab: The Brain Development & Education Lab is located in the Graduate School of Education at Stanford University and represents a collaboration between the Division of Developmental and Behavioral Pediatrics within the School of Medicine, the Graduate School of Education and the Wu Tsai Neuroscience Institute (we recently moved from The University of Washington’s Institute for Learning & Brain Sciences). The focus of the lab is understanding the interplay between brain maturation and cognitive development.  The lab is interdisciplinary, drawing on the fields of neuroscience, psychology, education, pediatrics and engineering to answer basic scientific and applied questions.  Current projects focus on understanding how the brain’s reading circuitry develops in response to education and how targeted behavioral interventions prompt changes in the brain’s of children with dyslexia. A major component of this work is the development of software to measure properties of human brain tissue, localize differences and quantify changes over development.

Tom Abel

Physics, Kavli Institute
Professor
View in Stanford Profiles


Last Updated: October 18, 2021

Tom's current research focuses on studying the formation and evolution of galaxies with new numerical techniques, however, he enjoys all areas of non-linear physics which can be addressed using supercomputer calculations! His research interests span dark matter dynamics, the physics of collisionless shocks, investigating the role that cosmic rays and magnetic fields play in the formation and evolution of galaxies, modeling the formation of stars and black holes as well as turbulence, and applications of numerical general relativity.

Daniel Akerib

Physics, Kavli Institute
Professor
View in Stanford Profiles


Last Updated: July 13, 2022

Together with Tom Shutt, Dan works on the LUX and LZ dark matter experiments to search for dark matter in the form of Weakly Interacting Massive Particles, or WIMPs. The detectors use liquid xenon as a target medium in a time projection chamber, or TPC. The Large Underground Xenon (LUX) experiment is currently operating a 250-kg target in the former Homestake gold mine in the Black Hills of South Dakota. Preparations are underway at SLAC to design and build the 7-ton successor, known as LUX-ZEPLIN (LZ). The group is involved in many aspects of data analysis, detector design, xenon purification, control andreadout systems, and detector performance studies.

Steven Allen

Physics, Kavli Institute
Professor
View in Stanford Profiles


Last Updated: July 13, 2022

Steve is interested in the physics of the most massive objects in the Universe and how we can use them to probe how the Universe evolved. Steve and his group are currently focused on understanding the astrophysics of galaxies and of galaxy clusters using multi-wavelength observations, and on using large, statistical samples of these objects to probe the natures of dark matter, dark energy and fundamental physics. More information regarding ongoing research and a list of Steve's current group members can be found here.

Pages