Skip to content Skip to navigation

PRISM Mentors

Return to PRISM page

PRISM supports all faculty in recruiting postdocs. The faculty listed on this page have expressed special interest in the PRISM program and may be actively recruiting. This is one of many ways to identify potential postdoc mentors; also review the guidance and links in the PRISM Application Guide for other ways to explore Stanford faculty. As you look for potential postdoc mentors, consider how faculty research interests align with your own.

Faculty: to create a profile, click "Log In" at the top right corner, then the "PRISM Faculty Opt In" button below. To edit an existing profile, click "Log In" at the top right corner, then the "Edit" button under your name/department/URL.

 

PRISM Faculty Opt-In   Displaying 201 - 250 of 568
PRISM mentorsort descending Research Interests

Jennifer Raymond

Neurobiology
Professor
View in Stanford Profiles

Neurobiology


Last Updated: July 14, 2022

The goal of our research is to understand the algorithms the brain uses to learn. A fundamental feature of our neural circuits is their plasticity, or ability to change. How does the brain use this plasticity to tune its own performance? What are the learning rules that determine whether a neural circuit changes in response to a given experience, and which specific neurons or synapses are altered?  Our research integrates molecular, cellular, systems and computational neuroscience approaches in mice to uncover the logic of how the cerebellum implements learning.

Jeremy Dahl

Radiology- Peds
Associate Professor
View in Stanford Profiles

Radiology- Peds


Last Updated: July 13, 2022

My laboratory develops and implements ultrasonic beamforming methods, ultrasonic imaging modalities, and ultrasonic systems and devices. Our current focus is on beamforming methods that are capable of generating high-quality images in the difficult-to-image patient population. These methods include coherence beamforming techniques and neural network beamformers for general B-mode and Doppler imaging, sound speed estimation for quantification of liver steatosis and image correction, and molecular imaging techniques for early cancer detection. We attempt to build these imaging methods into real-time imaging systems in order to apply them to clinical applications for the difficult-to-image patient population. Other projects in our laboratory include the development of novel ultrasonic imaging devices, such as small, intravascular ultrasound arrays that are capable of generating high acoustic output to elucidate the mechanical properties and structure of vascular plaques, and the development of ultrasound-guided drug delivery and therapy systems for cancer and diabetes applications.

  • Stanford Cancer Imaging Training (SCIT) Program

Jeremy Dahl

Radiology- Peds
Associate Professor
View in Stanford Profiles

Radiology- Peds


Last Updated: January 12, 2022

Our laboratory is an ultrasound engineering laboratory, located within in a clinical departement.  We are interesed in the development and implementation of ultrasonic beamforming methods, ultrasonic imaging modalities, and real-time ultrasound imaging devices. Our current focus is on beamforming methods that are capable of generating high-quality images in the difficult-to-image patient population, and include projects in reverberation noise reduction, sound speed estimation & phase aberration correction, and novel beamforming techniques for anatomica and functional imaging. We attempt to build these imaging methods into real-time imaging systems in order to apply them to clinical scenarios including cardiac, liver, and placental imaging, as well as cancer imaging in the kidney and breast.  Other collaborative projects in our laboratory include molecular imaging of cancer, microbubble-mediated drug delivery in hepatocellular carcinoma, passive cavitation imaging, and pulsed focused ultrasound for the stimulation of cells for therapetuic treatment of the pancreas.

  • Stanford Cancer Imaging Training (SCIT) Program
  • Stanford Molecular Imaging Scholars (SMIS)

Jeremy Heit

Radiology
Assistant Professor
View in Stanford Profiles

Radiology


Last Updated: February 23, 2024

Dr. Jeremy Heit is a neurointerventional surgeon (neurointerventional radiologist) who specializes in treating stroke, brain aneurysms, brain arteriovenous malformations, brain and spinal dural arteriovenous fistulae, carotid artery stenosis, vertebral body compression fractures, and congenital vascular malformations. Dr. Heit treats all of these conditions using minimally-invasive, image-guided procedures and state-of-the-art technology.

Jesse Engreitz

Genetics
Assistant Professor
View in Stanford Profiles

Genetics


Last Updated: March 03, 2021

The Engreitz Lab is mapping the regulatory wiring of the genome to understand the genetic basis of heart diseases.  This wiring includes millions of enhancers that tune gene expression in the thousands of cell types in the body. Yet, it has been unclear which enhancers regulate which genes — a massive and complex network that rewires in each cell type. To understand this network, we invent new genomics tools combining CRISPR and single-cell approaches; dissect molecular mechanisms of enhancer-gene communication; build computational models to map genome regulation; and apply these tools to connect human genetic variants to biological mechanisms of disease.

Jessica Feldman

Biology
Associate Professor
View in Stanford Profiles

Biology


Last Updated: November 11, 2021

Underlying the complexity of the human body is the ability of our cells to adopt diverse forms and functions. This process of cell differentiation requires cells to polarize, translating developmental information into cell-type specific arrangements of intracellular structures. The major goal of the research in my laboratory is to understand how cells build these functional intracellular patterns during development. In particular, we are currently focused on understanding the molecules and mechanisms that build microtubules at cell-type specific locations and the polarity cues that guide this patterning, both of which are essential for normal development and cell function. We study these processes in living animals because the chemical, mechanical, and ever-changing environments experienced by cells in intact organisms are not readily replicated ex vivo. Thus, we take innovative approaches in the model organism C. elegans using novel genetic and proteomic tools, high resolution live imaging, and embryological manipulations.

Jiangbin Ye

Radiation Oncology
Assistant Professor
View in Stanford Profiles

Radiation Oncology


Last Updated: July 14, 2022

An emerging hallmark of cancer is the modulation of metabolic pathways by malignant cells to promote cancer development. Dr. Jiangbin Ye’s professional interest is to investigate the causes and consequences of the abnormal metabolic phenotypes of tumor cells, with the prospect that therapeutic approaches might be developed to target these metabolic pathways to improve cancer treatment. The lab’s current goal is to explore the complex role of metabolic reprogramming in epigenetic regulations, and how cell fate and differentiation process are controlled by these epigenetic regulations. Ye’s lab is located in the Stanford University School of Medicine, with state-of-art research facilities. The multidiscipline research environment provides unique and outstanding training and collaborating opportunities. The candidate will have direct access to modern metabolomics research tools, including YSI biochemical analyzer, Seahorse XF Analyzer, hypoxia chamber and Agilent Q-TOF LC-MS. The lab is specialized in both untargeted and targeted metabolomics analysis, particularly isotope tracing technique for metabolic flux analysis. Dr. Ye is committed to mentoring and training for the candidate, providing all the support the candidate needs to reach the career goal.

  • Postdoctoral Training in the Radiation Sciences

Jill Helms

Surg: General Surgery
Professor
View in Stanford Profiles

Surg: General Surgery


Last Updated: February 24, 2023

I am a Professor in the Department of Surgery at Stanford University. I trained as a dentist and have a certificate in Periodontics and a PhD. My lab works in the field of Regenerative Medicine and Dental Medicine, with a focus on the biological and mechanical regulation of tissue repair and regeneration. Our objective has remained unchanged for the last two decades: to make new discoveries that improve patient outcomes.


While conducting clinically relevant research has been my main objective, it has always gone hand-in-hand with another goal: I believe that education is one of the most important tools to improving human health, and I am committed to diversifying our profession for the good of our communities and society. I use every avenue available to transform the way people think about science and medicine and emphasize its contribution to their daily lives. I also invest my time in supporting initiatives that promote inclusion, equity, and diversity. I am the Vice Chair of Diversity and Inclusion in our Department of Surgery at Stanford, and in this role I oversee diversity/equity/inclusion initiatives that impact students ranging from high school and college, through to trainees and junior faculty. In my lab I have assembled a team of individuals from different racial, ethnic, gender, age, and socioeconomic backgrounds, and I believe our science is stronger because of this diversity.

  • Other

Jin Billy Li

Genetics
Associate Professor
View in Stanford Profiles

Genetics


Last Updated: February 23, 2024

Li Lab studies RNA editing mediated by ADAR enzymes. The laboratory currently focuses on two fascinating aspects of ADAR. One is the major biological function that is to evade MDA5-mediated dsRNA sensing to suppress autoimmunity. This has led to therapeutic applications in cancer, autoimmune diseases and viral infection. The other is to harness the endogenous ADAR enzyme for transcriptome engineering that holds great potential for RNA-based therapeutics. This approach overcomes challenges faced by CRISPR-based genome engineering technologies.

  • Institutional Training Grant in Genome Science

Jodi Prochaska

Med: Prevention Research Cntr
Professor of Medicine - Stanford Prevention Research Center, Senior Associate Vice Provost for Clinical Research Governance
View in Stanford Profiles

Med: Prevention Research Cntr


Last Updated: February 02, 2024

Dr. Prochaska’s research program leverages technology to study and treat tobacco, alcohol, and other risk behaviors in populations at high risk. Her research spans community-based epidemiologic studies, randomized controlled clinical trials, and health policy analysis. Dr. Prochaska has conducted and collaborated on over 25 randomized controlled behavioral intervention trials, targeting tobacco and other risk behaviors with adolescents and adults.

  • Cardiovascular Disease Prevention Training Program

Johanna Nelson Weker

SLAC National Accelerator Lab
Lead Scientist
View in Stanford Profiles

SLAC National Accelerator Lab


Last Updated: October 04, 2023

The Weker Research Group is at the Stanford Synchrotron Radiation Lightsource (SSRL), a Directorate of the SLAC National Accelerator Laboratory. SLAC is a Department of Energy National Lab managed by Stanford Univeristy. Our research is focused on X-ray microscopy and X-ray characterization of materials far from equilibrium. Using X-rays we study a broad range of systems including energy storage materials such as Li-ion batteries, catalysts, and 3D metal printing (additive manufacturing). 

John Huguenard

Neurology & Neurological Sci
Professor
View in Stanford Profiles

Neurology & Neurological Sci


Last Updated: February 23, 2024

I direct the NIH supported T32 Epilepsy postdoctoral training program, with faculty broadly interested in the cellular/circuit basis of normal brain excitability and how it is disrupted in the disease of epilepsy.  My particular interest is in large scale brain rhythms occuring during childhood absence epilepsy as studied in animal models.

John Pauly

Electrical Engineering
Professor
View in Stanford Profiles

Electrical Engineering


Last Updated: February 23, 2024

My group does medical imaging research.  Particular areas of interest are image guided interventions, image reconstruction, and fast imaging methods. We are particularly interested in the application of machine learning methods for

Jon Long

Pathology
Assistant Professor
View in Stanford Profiles

Pathology


Last Updated: July 13, 2022

Energy metabolism encompasses the fundamental homeostatic processes by which we regulate our energy storage and energy expenditure. Energy metabolism is highly dynamic and changes according to availability of nutrients, physical activity, or environmental conditions. Dysregulation of energy metabolism is a hallmark of many age-associated chronic diseases, including obesity, type 2 diabetes, dyslipidemias, neurodegeneration, and cancer. Therefore a complete understanding of the molecular pathways of energy metabolism represents an important basic scientific goal with implications for many of the most pressing biomedical problems of our generation. Metabolic tissues including adipose, liver, and muscle play critical roles in energy homeostasis. We are interested in understanding the dynamic endocrine signals that control metabolic tissue function. What are the identities of these signals? How do their levels change in response to physiologic energy stressors? Where are they made? What cell types or tissues do they act on? To answer these questions, we use chemical and mass spectrometry-based technologies as discovery tools. We combine these tools with classical biochemical and genetic techniques in cellular and animal models. Our goal is to discover new molecules and signaling pathways that regulate organismal energy metabolism. Recent studies from our laboratory have identified a family of cold-regulated lipid hormones that stimulate mitochondrial respiration as well as a thermogenic polypeptide hormone regulated by exercise. We suspect that many more remain to be discovered. We anticipate that our approach will uncover fundamental homeostatic mechanisms that control mammalian energy metabolism. In the long term, we hope to translate our discoveries into therapeutic opportunities that matter for metabolic and other age-associated chronic diseases.

  • Cardiovascular Disease Prevention Training Program
  • Diabetes, Endocrinology and Metabolism
  • Stanford Training Program in Aging Research
  • Training grant in academic gastroenterology

Jonas Cremer

Biology
Assistant Professor

Biology


Last Updated: June 23, 2022

We are a highly interdisciplinary research team, joined in our desire to derive a more mechanistic understanding of prokaryotic life.

To elucidate how bacterial cells accumulate biomass and grow,  we study the model organism Escherichia coli. Our approaches tightly combine quantitative experimentation with mathematical modeling to consider the coordination of major physiological processes across scales; from metabolism and protein synthesis, via cell-size control, to swimming.

We further focus on gut bacteria and their interactions with each other and the human host. Our analyses include considerations of intestinal physiology and diet habits on the host side, as well as metabolism,  growth-physiology, ecology, and evolution on the bacterial side.

Jonathan Long

Pathology
Assistant Professor
View in Stanford Profiles

Pathology


Last Updated: November 29, 2021

Our laboratory uses chemical and genetic approaches to study the signaling pathways that control mammalian energy homeostasis. We focus on blood-borne metabolic hormones and other hormone-like molecules. Ultimately, we seek to translate our discoveries into therapeutic opportunities that matter for obesity and other age-associated metabolic diseases.

  • Diabetes, Endocrinology and Metabolism

Jonathan Payne

Earth & Planetary Sciences
Professor
View in Stanford Profiles

Earth & Planetary Sciences


Last Updated: January 27, 2023

Evolution, extinction, Earth system history.

Jonathan Pollack

Pathology
Professor
View in Stanford Profiles

Pathology


Last Updated: January 12, 2022

Research in the Pollack lab centers on translational genomics, with a current focus on diseases of the prostate. The lab employs next-generation sequencing, single-cell genomics, genome editing, and cell/tissue-based modeling to uncover disease mechanisms, biomarkers and therapeutic targets. Current areas of emphasis include: (1) Defining molecular features of prostate cancer that distinguish indolent from aggressive disease; (2) Determining disease mechanisms and new therapeutic targets in benign prostatic hyperplasia (BPH); and (3) Defining disease drivers in rare neoplasms (e.g., ameloblastoma).

  • Cancer Etiology, Prevention, Detection and Diagnosis

José Dinneny

Biology
Associate Professor
View in Stanford Profiles

Biology


Last Updated: December 01, 2021

In the next 50 years, one of the greatest advances we can make for global human health is the realization of a society that is fully sustainable. My research aims to improve agricultural sustainability by using a holistic approach that integrates across genetic, cellular and organismal scales to understand how plants survive stressful environments (Dinneny, 2015a; 2019). Prior research has explored water-stress responses at unparalleled spatial and temporal resolution, and identified the endodermal tissue layer as a critical signaling center for controlling growth and tissue differentiation in roots (Duan et al., 2013; Geng et al., 2013; Dinneny et al., 2008). The discovery of novel adaptive mechanisms used by roots to capture water established potential targets for breeding to improve water use efficiency (Bao et al., 2014; Sebastian et al., 2016). The invention of imaging methods enabled multidimensional studies of plant acclimation and illuminated our understanding of organ system growth from germination to senescence (Rellán-Álvarez et al., 2015; Sebastian et al., 2016). Physiological and molecular insight has been gained in understanding how plants sense water availability through computational modeling of tissue hydraulics (Robbins and Dinneny, 2015, 2018). Additionally, fine-scale biomechanical measurements identified a novel mechanism by which salinity damages cells through its effects on cell-wall integrity (Feng et al., 2018). I have paired my research with a personal passion for improving the education of young plant scientists, engaging lawmakers through science policy, and by being a vocal advocate for the broad deployment of agricultural biotechnology (Fahlgren et al., 2016, Friesner et al., 2021).

Department URL:
https://biology.stanford.edu/people/jose-r-dinneny

Josef Parvizi

Neurology & Neurological Sci
PROFESSOR OF NEUROLOGY AND, BY COURTESY, OF NEUROSURGERY
View in Stanford Profiles

Neurology & Neurological Sci


Last Updated: September 06, 2023

Our research aims to fill a fundamental gap of knowledge about the timing, location, and causal importance of specific neuronal populations in the brain that work together in the millisecond scale to subserve a given brain function.

We record directly from inside the brain in neurosurgical patients that are implanted with multiple electrodes across different anatomical and functional systems. We also apply direct electrical current to specific populations of neurons to alter their function while testing the effect of such perturbation on the human participant subjective feelings or task performance.

Our research is beneficial to each individual patient who volunteers to participate in our cognitive and behavioral experiments because we map the location of functional units within each patient’s brain and share this information with clinicians to make more precise and safer surgical plans and prevent major cognitive deficits after surgery.  We also map the location of pathological activity  and use the data to locate the source of seizures and the pathways for their propagation in each individual patient’s brain.

Our work is also relevant to public health and has societal impact. We strive to collect novel information about the functional architecture of the human brain, and improve our understanding of how the brain works. This will be vital for our understanding of the pathophysiology of neurological and psychiatric disorders that affect higher level cognitive functions and cause major problems for afflicted individuals and their families and the society.

We study human brain function at multiple levels of cognitive and behavioral processing. We study brain activity from the very early sensory input to very late decision making in even social or emotional domains. We do not focus on a specific area of the brain or on a narrow field of cognitive neuroscience. As documented by our published work, every level of human cognition, every stage of human brain function, and every regions of the human brain - are of interest to us – as we want to understand how different areas of the brain work together across different experimental tasks. For instance, we have studied the prefrontal cortex (PFC) as we have recorded directly from the human periaqueductal gray (PAG) and we have electrically stimulated the human default network as we have stimulated the human hypothalamus.  Our goal is to acquire a universal understanding of the functional architecture of the human brain with millisecond and millimeter precision.

Joseph Wu

Cardiovascular Institute
Professor, Director
View in Stanford Profiles

Cardiovascular Institute


Last Updated: July 13, 2022

Our lab works on biological mechanisms of patient-specific and disease-specific induced pluripotent stem cells (iPSCs). The main goals are to (i) understand basic cardiovascular disease mechanisms, (ii) accelerate drug discovery and screening, (iii) develop “clinical trial in a dish” concept, and (iv) implement precision cardiovascular medicine for prevention and treatment of patients. Our lab uses a combination of genomics, stem cells, cellular & molecular biology, physiological testing, and molecular imaging technologies to better understand molecular and pathophysiological processes.

Joseph DeSimone

Radiology-MIPS, Chemical Engineering
Professor
View in Stanford Profiles

Radiology-MIPS, Chemical Engineering


Last Updated: December 02, 2021

Our interdisciplinary lab pursues research centered around advanced polymer 3D fabrication methods and their applications in human health. Focus areas include (1) creating new digital polymer 3D printing capabilities, such as single-micron resolution printing and novel multi-materials printing methods; (2) synthesizing new polymers for 3D printing, with interests in composites, bioabsorbable materials, and recyclable materials; and (3) employing our 3D printing materials and process advances for clinical applications in areas including: new medical device opportunities; vaccine platform development via the advancement of novel microneedle designs; precision delivery of therapies (molecular and cellular) and vaccines; molecular monitoring; and device-assisted, targeted drug delivery, including for cancer treatment. We also pursue novel digital treatment planning approaches using 3D printed medical devices, with our current focus on pediatric therapeutic devices. In this area, we are working with partners at Stanford to design devices and treatment planning solutions for babies with conditions including cleft palate and Pierre Robin Sequence. Complementing these research areas, our lab also emphasizes entrepreneurship; diversity, equity, and inclusion; implications of the digital revolution in the manufacturing sector; and strategies toward achieving a circular economy.ch

Joseph DeSimone

Radiology-MIPS, Chemical Engineering
Professor
View in Stanford Profiles

Radiology-MIPS, Chemical Engineering


Last Updated: December 02, 2021

Our interdisciplinary lab pursues research centered around advanced polymer 3D fabrication methods and their applications in human health. Focus areas include (1) creating new digital polymer 3D printing capabilities, such as single-micron resolution printing and novel multi-materials printing methods; (2) synthesizing new polymers for 3D printing, with interests in composites, bioabsorbable materials, and recyclable materials; and (3) employing our 3D printing materials and process advances for clinical applications in areas including: new medical device opportunities; vaccine platform development via the advancement of novel microneedle designs; precision delivery of therapies (molecular and cellular) and vaccines; molecular monitoring; and device-assisted, targeted drug delivery, including for cancer treatment. We also pursue novel digital treatment planning approaches using 3D printed medical devices, with our current focus on pediatric therapeutic devices. In this area, we are working with partners at Stanford to design devices and treatment planning solutions for babies with conditions including cleft palate and Pierre Robin Sequence. Complementing these research areas, our lab also emphasizes entrepreneurship; diversity, equity, and inclusion; implications of the digital revolution in the manufacturing sector; and strategies toward achieving a circular economy.ch

Joseph Wu

Cardiovascular Institute
Professor & Director, Stanford Cardiovascular Institute
View in Stanford Profiles

Cardiovascular Institute


Last Updated: January 12, 2022

Joseph C. Wu, MD, PhD is Director of Stanford Cardiovascular Institute and Simon H. Stertzer, MD, Professor of Medicine and Radiology at Stanford University. His lab works on cardiovascular genomics and induced pluripotent stem cells (iPSCs). The main goals are to (i) understand basic disease mechanisms, (ii) accelerate drug discovery and screening, (iii) develop “clinical trial in a dish” concept, and (iv) implement precision medicine for patients.

  • Mechanisms in Innovation in Vascular Disease
  • Multi-Disciplinary Training Program in Cardiovascular Imaging at Stanford
  • Training in Myocardial Biology at Stanford (TIMBS)

Josh Knowles

Med: Cardiovascular Medicine, Cardiovascular Institute, Med: Prevention Research Cntr
Assistant Professor
View in Stanford Profiles

Med: Cardiovascular Medicine, Cardiovascular Institute, Med: Prevention Research Cntr


Last Updated: January 13, 2022

The overall theme of our research has been the genetic basis of cardiovascular disease across the continuum from Discovery to the development of Model Systems to the Translation of these findings to the clinic and most recently to the Public Health aspect of genetics. Currently our Discovery and basic translational efforts center on understanding the genetic basis of insulin resistance using genome wide association studies coupled advanced genetic analyses such as colocalization with exploration using in vitro and in vivo model systems including induced pluripotent stem cells and and gene editing screens. 

  • Cardiovascular Disease Prevention Training Program
  • Diabetes, Endocrinology and Metabolism
  • Mechanisms in Innovation in Vascular Disease
  • Multi-Disciplinary Training Program in Cardiovascular Imaging at Stanford
  • Other

Josh Knowles

Med: Cardiovascular Medicine, Cardiovascular Institute, Med: Prevention Research Cntr
Assistant Professor
View in Stanford Profiles

Med: Cardiovascular Medicine, Cardiovascular Institute, Med: Prevention Research Cntr


Last Updated: January 13, 2022

The overall theme of our research has been the genetic basis of cardiovascular disease across the continuum from Discovery to the development of Model Systems to the Translation of these findings to the clinic and most recently to the Public Health aspect of genetics. Currently our Discovery and basic translational efforts center on understanding the genetic basis of insulin resistance using genome wide association studies coupled advanced genetic analyses such as colocalization with exploration using in vitro and in vivo model systems including induced pluripotent stem cells and and gene editing screens. 

  • Cardiovascular Disease Prevention Training Program
  • Diabetes, Endocrinology and Metabolism
  • Mechanisms in Innovation in Vascular Disease
  • Multi-Disciplinary Training Program in Cardiovascular Imaging at Stanford
  • Other

Josh Knowles

Med: Cardiovascular Medicine, Cardiovascular Institute, Med: Prevention Research Cntr
Assistant Professor
View in Stanford Profiles

Med: Cardiovascular Medicine, Cardiovascular Institute, Med: Prevention Research Cntr


Last Updated: January 13, 2022

The overall theme of our research has been the genetic basis of cardiovascular disease across the continuum from Discovery to the development of Model Systems to the Translation of these findings to the clinic and most recently to the Public Health aspect of genetics. Currently our Discovery and basic translational efforts center on understanding the genetic basis of insulin resistance using genome wide association studies coupled advanced genetic analyses such as colocalization with exploration using in vitro and in vivo model systems including induced pluripotent stem cells and and gene editing screens. 

  • Cardiovascular Disease Prevention Training Program
  • Diabetes, Endocrinology and Metabolism
  • Mechanisms in Innovation in Vascular Disease
  • Multi-Disciplinary Training Program in Cardiovascular Imaging at Stanford
  • Other

Josh Knowles

Med: Cardiovascular Medicine
Assistant Professor
View in Stanford Profiles

Med: Cardiovascular Medicine


Last Updated: July 13, 2022

"The fundamental theme of work in the Knowles lab is the application of genetics to improve human health. We view this as a continuum from Discovery to the development of Model Systems to Clinical Translation to larger Public Health efforts.

Currently, discovery and basic translational efforts center on understanding the genetic basis of insulin resistance and related cardiovascular traits using GWAS studies coupled with exploration in model systems both in vitro (including classic cell lines as well as induced pluripotent stem cells) and in vivo (primarily mouse models). Clinical-translational research efforts in the lab are at the intersection of genetics, insulin resistance and hypercholesterolemia. We are asking if we can improve an individual’s risk by giving them information (i.e. genetic risk score) about their inherited risk of heart disease. We are also performing a clinical trial to determine the mechanism of statin-associated diabetes (which predominantly occurs in those with insulin resistance). Finally, Familial Hypercholesterolemia (FH) is a major focus given its morbidity and mortality and public health impact. As the Chief Research Advisor for The FH Foundation (FHF), a patient-led non-profit research and advocacy organization, we are attempting to raise the profile of familial hypercholesterolemia (FH), an inherited disease that causes extremely elevated LDL cholesterol levels and risk of coronary disease. We helped lead the FHF efforts to establish a national patient registry (CASCADE FH), apply for an ICD10 code for FH, advocate for genetic testing to be offered to FH patients and are now using cutting-edge “big-data” approaches to identify previously undiagnosed FH patients in electronic medical records (FIND FH). We collaborate with the CDC, AHA and ACC on these efforts."

  • Cardiovascular Disease Prevention Training Program
  • Diabetes, Endocrinology and Metabolism
  • Mechanisms in Innovation in Vascular Disease

Joy Wu

Med: Endocrin, Geronot & Metab
Associate Professor
View in Stanford Profiles

Med: Endocrin, Geronot & Metab


Last Updated: November 29, 2021

As a physician scientist with a clinical focus on osteoporosis, my laboratory focuses on stem cell sources for bone-forming osteoblasts, and osteoblast support of hematopoiesis in the bone marrow. In particular we are interested in the pathways that promote osteoblast differentiation, using genetically modified mice and lineage tracing techniques in vivo. We are also studying the role of the osteoblast niche in normal hematopoiesis and bone metastases from breast cancer.

Department URL:
https://medicine.stanford.edu/

  • Diabetes, Endocrinology and Metabolism

Juan G. Santiago

Mechanical Engineering
Professor
View in Stanford Profiles

Mechanical Engineering


Last Updated: January 28, 2022

We invent and develop systems which couple fluid flow, chemical reactions, mass transport, heat transfer, and/or electric fields and apply these to chemical and biological assays.  We design, build, and test microfluidic devices that couple electrokinetics with chemical reactions for on-chip analyses of DNA and high-throughput flow systems for cell assays.  We have two funded projects for which we seek a motivated postdoctoral researcher:

1. We are developing a microfluidic device for fully automated detection of the RNA of SARS-CoV-2 RNA (the virus which causes Covid-19) in less than 60 min.  The device will feature electric field control and enhancement of four processes: RNA extraction, reverse transcription, LAMP amplification, and highly specific detection using CRISPR/Cas enzymes.  See a preliminary version of this assay here:  Ramachandran et al., PNAS, 117, 47 (2020).

2. We are conducting a fundamental study of CRISPR/Cas enzymes with the goal of exploring the ultimate sensitivity of CRISPR-based diagnostic systems.  This work includes developing experimentally validated models of enzyme kinetics and detailed models for the signal-to-noise ratio associated with CRISPR diagnostics.  See Ramachandran & Santiago, Analytical Chem., 93, 20 (2021).

Department URL:
https://me.stanford.edu

Julia Salzman

Biochemistry, Biomedical Data Sciences
Assistant Professor
View in Stanford Profiles

Biochemistry, Biomedical Data Sciences


Last Updated: July 13, 2022

Statistical algorithms for genomics, RNA biology, splicing, cancer genomics, spatial transcriptomics

Julia Salzman

Biochemistry, Biomedical Data Sciences
Assistant Professor
View in Stanford Profiles

Biochemistry, Biomedical Data Sciences


Last Updated: July 13, 2022

Statistical algorithms for genomics, RNA biology, splicing, cancer genomics, spatial transcriptomics

Juliana Idoyaga

Microbiology and Immunology
Assistant Professor
View in Stanford Profiles

Microbiology and Immunology


Last Updated: July 13, 2022

The Idoyaga Lab is focused on the function and biology of very unique cells of the immune system, Dendritic cells (DCs). DCs are specialized antigen-presenting cells that initiate and modulate our body’s immune responses to invading microbes. DCs also play a crucial role in maintaining immune unresponsiveness to our own tissues and environmental and/or innocuous substances. Considering their importance in orchestrating the quality and quantity of immune responses, DCs are an indisputable target for vaccines and therapies.

  • Molecular and Cellular Immunobiology
  • Molecular Basis of Host Parasite Interaction

Julie Kauer

Neuroscience Institute
Professor
View in Stanford Profiles

Neuroscience Institute


Last Updated: August 21, 2023

We are interested in the molecular mechanisms involved in synaptic transmission and plasticity using electrophysiological, optogenetic and behavioral tools in mouse brain and spinal cord. We study brain circuit alterations caused by stress, drugs of abuse, and pain. Our lab focuses on three regions of the central nervous system 1) the ventral tegmental area (VTA), a key nucleus in the reward pathway and containing neurons that regulate sleep architechture, and 2) spinal dorsal horn to brain connections that carry pain information, and 3) the lateral hypothalamus, a region critical in regulation of sleep/wake cycles. We have a postdoctoral opening for a highly motivated researcher for a new project in our lab. This project will probe brain circuits controlling sleep, testing for alterations in mice with mutations in bipolar disorder-related genes. The new postdoc will use electrophysiological and optogenetic approaches in mice to examine excitability changes and be part of a vibrant multi-university collaboration that will for the first time study how neuronal circuits, sleep/wake states, and behavior are altered with CRISPR driven bipolar disorder-linked gene mutations.

  • Other

Julie Parsonnet

Med: Infectious Diseases, Epidemiology and Population Health
Professor
View in Stanford Profiles

Med: Infectious Diseases, Epidemiology and Population Health


Last Updated: January 27, 2022

Dr. Parsonnet is an Infectious Diseases epidemiologist and clinician.  The Parsonnet lab works to understand how infectious agents influence the development of chronic diseases.  During the COVID crisis, the lab has also been actively involved in a wide range of investigations of this disease ranging from large seroepidemiologic studies to novel treatment trials to collaborative studies on COVID immunology.  Studies that could potentially take a fellow include:

  • Large seroepidemiologic, longitudinal studies of COVID in the counties throughout California both before and after the initiation of vaccines.   We have collected data sets that allow us to understand risk factors for breakthrough infections,  how vaccination and other interventions change behavior,  and the role of natural infection in building immunity.
  • Studies on COVID infection, immunity and vaccination in patients receiving dialysis
  • A clinical trial of camostat, a TMPPRS2 blocker, that prevents SARS-CoV2 from entering cells.
  • Studies that define the normal human body temperature in children and adults
  • Research on how skin care in babies varies across populations and how this influences skin integrity and development of allergic diseases later in life (with Kari Nadeau).
  • Studies on the development of the pediatric virome, microbiome and immunome in the first three years of life.
  • Clinical Epidemiology of Infectious Diseases

Julie Parsonnet

Med: Infectious Diseases, Epidemiology and Population Health
Professor
View in Stanford Profiles

Med: Infectious Diseases, Epidemiology and Population Health


Last Updated: January 27, 2022

Dr. Parsonnet is an Infectious Diseases epidemiologist and clinician.  The Parsonnet lab works to understand how infectious agents influence the development of chronic diseases.  During the COVID crisis, the lab has also been actively involved in a wide range of investigations of this disease ranging from large seroepidemiologic studies to novel treatment trials to collaborative studies on COVID immunology.  Studies that could potentially take a fellow include:

  • Large seroepidemiologic, longitudinal studies of COVID in the counties throughout California both before and after the initiation of vaccines.   We have collected data sets that allow us to understand risk factors for breakthrough infections,  how vaccination and other interventions change behavior,  and the role of natural infection in building immunity.
  • Studies on COVID infection, immunity and vaccination in patients receiving dialysis
  • A clinical trial of camostat, a TMPPRS2 blocker, that prevents SARS-CoV2 from entering cells.
  • Studies that define the normal human body temperature in children and adults
  • Research on how skin care in babies varies across populations and how this influences skin integrity and development of allergic diseases later in life (with Kari Nadeau).
  • Studies on the development of the pediatric virome, microbiome and immunome in the first three years of life.
  • Clinical Epidemiology of Infectious Diseases

Julie Parsonnet

Med: Infectious Diseases, Epidemiology and Population Health
Professor
View in Stanford Profiles

Med: Infectious Diseases, Epidemiology and Population Health


Last Updated: January 27, 2023

I am an infectious diseases physician and epidemiologist    OUr lab is well know internationally in two major areas:  1.  The role of infections in chronic diseases and 2.  Physiologic changes in humans over time, specifically the decrease in human body temperature.  3. Novel surveillance projects, especially serosurveys done through the mail and  the use of wastewater to track infections.  Right now, projects that could integrate a post-doctoral fellow include:  In addition, my research group works on gun violence prevention.  

1.  Analysis of a California population-based serosurvey on SARS-COV2 infection, including information on human behaviors (mask wearing, social , vaccination) and demographics (age, race, education),  We could expand this study to look at other infectious diseases as well.

2.  Research assessing the association between high normal body temperature and longevity.

3.  Gun violence prevention.  Gun violence is a national tragedy.  We have two major projects in this area:

     a.  A project with Santa Clara County Department of Public health that combines the many data sources on gun violence across the county (Police, hospitals,EMT, schools, health departments), bring together stakeholders at community organizations across the county fighting gun violence and work with health care workers to identify strategies to educate patients on gun violence prevention.

     b.  Educational project development to teach physicians across the county how to talk to patients about gun violence

  • Applied Genomics in Infectious Diseases
  • Clinical Epidemiology of Infectious Diseases
  • Training grant in academic gastroenterology

Julie Parsonnet

Med: Infectious Diseases, Epidemiology and Population Health
Professor
View in Stanford Profiles

Med: Infectious Diseases, Epidemiology and Population Health


Last Updated: January 27, 2023

I am an infectious diseases physician and epidemiologist    OUr lab is well know internationally in two major areas:  1.  The role of infections in chronic diseases and 2.  Physiologic changes in humans over time, specifically the decrease in human body temperature.  3. Novel surveillance projects, especially serosurveys done through the mail and  the use of wastewater to track infections.  Right now, projects that could integrate a post-doctoral fellow include:  In addition, my research group works on gun violence prevention.  

1.  Analysis of a California population-based serosurvey on SARS-COV2 infection, including information on human behaviors (mask wearing, social , vaccination) and demographics (age, race, education),  We could expand this study to look at other infectious diseases as well.

2.  Research assessing the association between high normal body temperature and longevity.

3.  Gun violence prevention.  Gun violence is a national tragedy.  We have two major projects in this area:

     a.  A project with Santa Clara County Department of Public health that combines the many data sources on gun violence across the county (Police, hospitals,EMT, schools, health departments), bring together stakeholders at community organizations across the county fighting gun violence and work with health care workers to identify strategies to educate patients on gun violence prevention.

     b.  Educational project development to teach physicians across the county how to talk to patients about gun violence

  • Applied Genomics in Infectious Diseases
  • Clinical Epidemiology of Infectious Diseases
  • Training grant in academic gastroenterology

Julien Sage

Ped: Cancer Biology, Genetics
Professor
View in Stanford Profiles

Ped: Cancer Biology, Genetics


Last Updated: August 07, 2020

We are generally interested in the mechanisms that drive the proliferation of cells under physiological and pathological conditions. We work on a wide range on projects from fundamental cell cycle mechanisms related to the RB pathway to pre-clinical cancer studies. We leverage publicly-available cancer genomics data and generate our own set of genetic, epigenetic, and proteomic data sets to identify novel regulators of cancer growth. We also develop novel genetic approaches in mice to conclusively determine the function of these candidate genes and pathways in tumorigenesis in vivo. Finally, we team up with pharmaceutical companies and clinicians in academic centers to translate our discoveries into the clinic as rapidly as possible.

  • Institutional Training Grant in Genome Science
  • Postdoctoral Training in the Radiation Sciences
  • Stanford Training Program in Aging Research
  • Stanford Training Program in Lung Biology
  • Training in Pediatric Nonmalignant Hematology and Stem Cell Biology

Julien Sage

Ped: Cancer Biology, Genetics
Professor
View in Stanford Profiles

Ped: Cancer Biology, Genetics


Last Updated: August 07, 2020

We are generally interested in the mechanisms that drive the proliferation of cells under physiological and pathological conditions. We work on a wide range on projects from fundamental cell cycle mechanisms related to the RB pathway to pre-clinical cancer studies. We leverage publicly-available cancer genomics data and generate our own set of genetic, epigenetic, and proteomic data sets to identify novel regulators of cancer growth. We also develop novel genetic approaches in mice to conclusively determine the function of these candidate genes and pathways in tumorigenesis in vivo. Finally, we team up with pharmaceutical companies and clinicians in academic centers to translate our discoveries into the clinic as rapidly as possible.

  • Institutional Training Grant in Genome Science
  • Postdoctoral Training in the Radiation Sciences
  • Stanford Training Program in Aging Research
  • Stanford Training Program in Lung Biology
  • Training in Pediatric Nonmalignant Hematology and Stem Cell Biology

Juliet Knowles

Neurology & Neurological Sci
Assistant Professor
View in Stanford Profiles

Neurology & Neurological Sci


Last Updated: November 16, 2022

Epilepsy affects ~1% of all children and is defined by recurrent, unprovoked seizures, impaired cognitive abilities, and diminished quality of life. The predisposition for seizures is thought to result from abnormal plasticity and excessive synchrony in affected neural networks. Myelin plasticity is a newly recognized mode of activity-dependent neural network adaptation. The potential for dysregulated myelin plasticity in disease states such as epilepsy is unexplored. Myelination of axons increases conduction velocity and promotes coordinated network function including oscillatory synchrony. During and after age-dependent developmental myelination, increases in myelin occur when humans and rodents acquire new skills. While adaptive myelin plasticity modulates networks to support function in the healthy state, it is unknown whether this process also contributes to network dysfunction in neurological disease.

The Knowles lab conducts basic, translational and clinical research to study how seizures shape white matter, and how changes in white matter shape the course of epilepsy and its comorbidities. We discovered that generalized (absence) seizures induce aberrant myelination that promotes seizure progression. Thus, maladaptive myelination may be a novel pathogenic mechanism in epilepsy and other neurological diseases.  Using innovative imaging, electrophysiological, histological and molecular biology techniques, we are studying multiple questions.

How does white matter structure change throughout the brain over the course of epilepsy?
How does white matter structure impact network synchronization, seizures and cognition?
What signaling pathways underlie aberrant white matter plasticity in different forms of epilepsy?
What can we learn from white matter changes found with various imaging modalities in humans with epilepsy?

Justin Annes

Med: Endocrin, Geronot & Metab
Assistant Professor
View in Stanford Profiles

Med: Endocrin, Geronot & Metab


Last Updated: February 23, 2024

My lab works towards developing novel therapeutics for Diabetes and Endocrine Cell Tumors. To achieve this goal, we develop (1) new animal disease models  to better understand disease pathogenesis (biologists), (2) innovative screening/discovery  platforms to identify potential therapeutic targets and lead compounds (biologists/biochemists) and  (3) synthesize new chemical entities with desired activities for therapeutic application (medicinal chemists). Hence, typical projects in the lab are interdisciplinary and collaborative where the work of biologists is supported by the power of synthetic chemistry . A major current theme in the lab is addressing the challenge   of cell-targeted drug delivery, i.e. how can we develop a medicine that only acts on the cell type of interest and apply this to (a) a regenerative therapy for diabetes and (b) the treatment of cancer.   If you're excited about disease modeling and/or drug discovery (in diabetes and cancer) my lab might be a good match for you.

Justin Annes


Associate Professor
View in Stanford Profiles


Last Updated: February 06, 2023

Diabetes is a disorder of glucose homeostasis that causes excess hospitalization, morbidity and early mortality among the more than 34.2 million disease-affected Americans. Consequently, developing pharmacologic methods to preserve β-cell function and/or stimulate β-cell mass expansion is of intense interest. Presently, the creation of improved diabetes medications is stymied by a dearth of safe therapeutic targets. In fact, on-target but off-tissue drug effects are slowing progress across multiple diabetes therapeutic domains including β-cell regeneration, β-cell preservation, and immune-protection. In principle, stimulating the regeneration of insulin-producing β-cells could be used to restore or enhance endogenous insulin production capacity. Recently, we developed several new highly potent chemical inducers of human β-cell proliferation. However, the non-selective growth-promoting activity of these molecules prevents further clinical development. Consequently, a “modular” (readily transferable) system for β-cell-targeted drug delivery is needed to realize the next generation of diabetes therapeutics. To address this challenge, we are developing a β-cell-targeted drug delivery module based upon the uniquely high zinc content of β-cells. In this system, a zinc-chelating moiety is covalently integrated into a replication-promoting (cargo) compound to generate a bi-functional compound (βRepZnC) that selectively enhances β-cell drug accumulation and replication-promoting activity (PMID: 30527998).

We are seeking a motivated post-doctoral scholar to join our collaborative research team. This scientist will lead and engage  in developing novel βRepZnCs and uncover the biology of β-cell failure. They will define the chemical “rules” that govern zinc-dependent β-cell drug targeting,  examine the in vivo β-cell selectivity (accumulation and replication-promoting activity) of  newly developed βRepZnCs (work is supported by a synthtic chemist) and use CRISPR technology to genetically dissect the pathways that control β-cell zinc and zinc-binding drug accumulation. These studies will a break-through technology for β-cell-targeted drug delivery and provide fundamental (targetable) insights into β-cell biology. This work has the potential to transform our therapeutic approach to diabetes and provide critical insights into β-cell biology.

 

 

  • Diabetes, Endocrinology and Metabolism

Justin Sonnenburg

Microbiology and Immunology
Associate Professor
View in Stanford Profiles

Microbiology and Immunology


Last Updated: March 24, 2022

The goals of the Sonnenburg Lab research program are to (i) elucidate the basic mechanisms that underlie dynamics within the gut microbiota and (ii) devise and implement strategies to prevent and treat disease in humans via the gut microbiota. We investigate the principles that govern gut microbial community function and interaction with the host using experimental systems ranging from gnotobiotic mice to humans. We pursue molecular mechanisms of host-microbial interaction using an array of technologies including gnotobiotic and conventional mouse models, quantitative imaging, molecular genetics and synthetic biology, and a metabolomics pipeline focused on defining microbiota-dependent metabolites. The synergy of these diverse techniques provides insight into the dynamics of a microbial ecosystem in response to cues ranging from nutrition to pathogen-induced inflammation. Studies of microbiomes diverse human cohorts, ranging from indigenous populations in Africa, Asia, and South America to dietary intervention trials in cohorts of US residents, have provided great insight into microbiome dynamics and fuel a pipeline of reverse translational studies.

  • Molecular Basis of Host Parasite Interaction

Kabir Peay

Biology
Associate Professor
View in Stanford Profiles

Biology


Last Updated: August 10, 2020

I study how ecological communities assemble and influence ecosystem processes, focusing on the role of microbial symbioses, which are ubiquitous in plants and animals. My research is driven primarily by intellectual curiosity about the unseen organisms that shape our planet, but is also aimed to provide knowledge that can be used to better manage ecosystem responses to global change, agriculture, and human health.
My lab uses a combination of ecological theory, molecular biology techniques, and field and laboratory experiments to study microbial communities. Our lab works across a large range of systems, both geographically and ecologically. We work on a number of local projects in the SF Bay Area, across North America, and in tropical rainforests of South American and Southeast Asia. We also study a wide range of interactions, from decomposer bacteria and fungi that are key agents of elemental cycling, to pathogenic fungi  and mutualistic fungi. While I am open to working on a variety of systems, a large portion of my work has  focused on root-fungal mutualisms, known  as mycorrhizal symbiosis, because nearly all plants species, including >98% of all trees, use these partnerships to acquire the soil macronutrients that most limit plant growth and ecosystem productivity. While we now know that such microbial mutualisms are common, there has been far less ecological research on mutualisms compared with antagonistic interactions, such as competition and predation. I ask (a) what controls mycorrhizal community assembly across spatial scales, (b) how mycorrhizal symbiosis structures plant communities, and (c) how mycorrhizal symbiosis is linked to ecosystem processes. By integrating these three topics I seek to build a roots-to-biomes understanding of ecological communities and ecosystem function.

Kacper Rogala

Structural Biology, Chemical and Systems Biology
Assistant Professor
View in Stanford Profiles

Structural Biology, Chemical and Systems Biology


Last Updated: June 23, 2022

How are nutrients recognized by their protein sensors? How is their transport across cellular and intracellular membranes regulated? And, how is nutrient sensing integrated with other chemical signals, such as hormones, to determine cellular decisions, especially the decision: to grow or not to grow?

We are a team of structural and chemical biologists aiming to answer these fundamental questions at the level of ångstroms, nanometers, and micrometers. Many proteins in these pathways are deregulated in cancer, and our mission is to first reveal the mechanism of action of these proteins, and then use that knowledge to develop targeted chemical probes to modulate their activity in cells and organisms.


Our lab is friendly to trainees from all walks of life, and we cherish trust, inclusiveness and intellectual curiosity, where no question is too big to study, as long as we have the right approach and a unique angle. Most importantly, our lab operates with a growth mindset for all of our trainees, and we put a heavy emphasis on training and skills development — across a wide range of experimental and computational techniques. And through collaboration, strong work ethic, seeking feedback, and trying out new strategies, we drive innovation and novel discoveries for our team.

If this is something you might be interested in, please contact Kacper directly. We are always on the lookout for driven postdocs! Especially, we want cell biologists and biochemists to join our team and to contribute your unique skillsets to a number of collaborative projects.

Kacper Rogala

Structural Biology, Chemical and Systems Biology
Assistant Professor
View in Stanford Profiles

Structural Biology, Chemical and Systems Biology


Last Updated: June 23, 2022

How are nutrients recognized by their protein sensors? How is their transport across cellular and intracellular membranes regulated? And, how is nutrient sensing integrated with other chemical signals, such as hormones, to determine cellular decisions, especially the decision: to grow or not to grow?

We are a team of structural and chemical biologists aiming to answer these fundamental questions at the level of ångstroms, nanometers, and micrometers. Many proteins in these pathways are deregulated in cancer, and our mission is to first reveal the mechanism of action of these proteins, and then use that knowledge to develop targeted chemical probes to modulate their activity in cells and organisms.


Our lab is friendly to trainees from all walks of life, and we cherish trust, inclusiveness and intellectual curiosity, where no question is too big to study, as long as we have the right approach and a unique angle. Most importantly, our lab operates with a growth mindset for all of our trainees, and we put a heavy emphasis on training and skills development — across a wide range of experimental and computational techniques. And through collaboration, strong work ethic, seeking feedback, and trying out new strategies, we drive innovation and novel discoveries for our team.

If this is something you might be interested in, please contact Kacper directly. We are always on the lookout for driven postdocs! Especially, we want cell biologists and biochemists to join our team and to contribute your unique skillsets to a number of collaborative projects.

Kalanit Grill-Spector

Psychology, Neuroscience Institute
Professor
View in Stanford Profiles

Psychology, Neuroscience Institute


Last Updated: November 11, 2021

My research utilizes multimodal imaging (fMRI, dMRI, qMRI), computational modeling, and behavioral measurements to investigate human visual cortex. We seek to understand how the underlying neural mechanisms and their anatomical implementation enable rapid and efficient visual perception and recognition. Critically, we examine how the human brain and visual perception change across development to understand how the interplay between anatomical constraints and experience shapes visual cortex and ultimately behavior.

We strive to create a lab that reflects the diversity of our global community and is actively involved in solving scientific and societal problems that affect all of us. I am also involved in the Wu Tsai Neurosciences Institute and the Ophthalmology T32 training grant.

  • Other

Kalanit Grill-Spector

Psychology, Neuroscience Institute
Professor
View in Stanford Profiles

Psychology, Neuroscience Institute


Last Updated: November 11, 2021

My research utilizes multimodal imaging (fMRI, dMRI, qMRI), computational modeling, and behavioral measurements to investigate human visual cortex. We seek to understand how the underlying neural mechanisms and their anatomical implementation enable rapid and efficient visual perception and recognition. Critically, we examine how the human brain and visual perception change across development to understand how the interplay between anatomical constraints and experience shapes visual cortex and ultimately behavior.

We strive to create a lab that reflects the diversity of our global community and is actively involved in solving scientific and societal problems that affect all of us. I am also involved in the Wu Tsai Neurosciences Institute and the Ophthalmology T32 training grant.

  • Other

Kara Davis

Ped: Hematology-Oncology
Assistant Professor
View in Stanford Profiles

Ped: Hematology-Oncology


Last Updated: January 20, 2022

Despite high rates of initial response to frontline treatment in many human cancers, mortality largely results from relapse or metastasis. Diverse clinical responses are considered to be the result of intratumoral diversity: all cells within a given tumor do not possess the same behavior or response to therapy. Understanding tumor heterogeneity is key to improving outcomes for patients with cancer. Although debate remains as to whether cells with treatment resistance exist as part of the initial tumor at presentation versus develop under the pressure of therapy, many studies suggest it to be the former. Further, this intrinsic heterogeneity observed in primary tissues is not accurately represented or studied through genetic animal models or cell lines and does not lend itself to study of bulk tumor cells. Understanding the intrinsic heterogeneity of tumor populations will improve the ability for clinicians to make prognosis and treatment decisions for patients. This requires using single-cell studies to identify risk-associated individual cell populations across patients.

We apply high-dimensional, single-cell approaches to primary patient samples, primarily in the study of childhood leukemia and solid tumors, to identify treatment resistant cell populations. Further, we are developing newer and more accurate models of clinical risk by utilizing machine learning and neural network modeling of single-cell data in combination with patient level data to learn more about risk of treatment failure and relapse. Finally, by identifying cell populations associated or causative of relapse risk, we interrogate mechanisms of resistance and new therapeutic opportunities. 

Pages