Skip to content Skip to navigation

PRISM Mentors

Return to PRISM page

PRISM supports all faculty in recruiting postdocs. The faculty listed on this page have expressed special interest in the PRISM program and may be actively recruiting. This is one of many ways to identify potential postdoc mentors; also review the guidance and links in the PRISM Application Guide for other ways to explore Stanford faculty. As you look for potential postdoc mentors, consider how faculty research interests align with your own.

Faculty: to create a profile, click "Log In" at the top right corner, then the "PRISM Faculty Opt In" button below. To edit an existing profile, click "Log In" at the top right corner, then the "Edit" button under your name/department/URL.

 

PRISM Faculty Opt-In   Displaying 251 - 300 of 568
PRISM mentorsort ascending Research Interests

Meagan Mauter

Civil and Environ Engineering, Woods Institute, Chemical Engineering
Associate Professor
View in Stanford Profiles

Civil and Environ Engineering, Woods Institute, Chemical Engineering


Last Updated: June 23, 2022

The mission of the Water & Energy Efficiency for the Environment Lab (WE3Lab) is to reduce the cost and carbon intensity of water desalination and reuse. Ongoing research efforts include:

1) developing automated, precise, robust, intensified, modular, and electrified (A-PRIME) water desalination technologies to support a circular water economy;

2) optimizing the coordinated operation of decarbonized water and energy systems; and

3) supporting the design and enforcement of water-energy-food policies (e.g., Effluent Limitation Guidelines, the Clean Power Plan, CA Sustainable Groundwater Management Act, etc.).

Meagan Mauter

Civil and Environ Engineering, Woods Institute, Chemical Engineering
Associate Professor
View in Stanford Profiles

Civil and Environ Engineering, Woods Institute, Chemical Engineering


Last Updated: June 23, 2022

The mission of the Water & Energy Efficiency for the Environment Lab (WE3Lab) is to reduce the cost and carbon intensity of water desalination and reuse. Ongoing research efforts include:

1) developing automated, precise, robust, intensified, modular, and electrified (A-PRIME) water desalination technologies to support a circular water economy;

2) optimizing the coordinated operation of decarbonized water and energy systems; and

3) supporting the design and enforcement of water-energy-food policies (e.g., Effluent Limitation Guidelines, the Clean Power Plan, CA Sustainable Groundwater Management Act, etc.).

Maya Mathur

Epidemiology and Population Health
Assistant Professor
View in Stanford Profiles

Epidemiology and Population Health


Last Updated: February 23, 2024

Maya Mathur is an Assistant Professor at the Stanford University Quantitative Sciences Unit and the Associate Director of the Stanford Center for Open and Reproducible Science. She is a statistician whose methodological research focuses on advancing methods for meta-analysis, replication studies, and sensitivity analysis. She has received early-career and young investigator awards from the Society for Epidemiologic Research, the Society for Research Synthesis Methods, and American Statistical Association.

Maya Kasowski

Med: Sean Parker Allergy & Asthma
Assistant Professor
View in Stanford Profiles

Med: Sean Parker Allergy & Asthma


Last Updated: February 23, 2024

I am a clinical pathologist and assistant professor in the Departments of Medicine, Pathology, and Genetics (by courtesy) at Stanford. I completed my MD-PhD training at Yale University and my residency training and a post-doctoral fellowship in the Department of Genetics at Stanford University. My experiences as a clinical pathologist and genome scientist have made me passionate about applying cutting-edge technologies to primary patient specimens in order to characterize disease pathologies at the molecular level. The core focus of my lab is to study the mechanisms by which genetic variants influence the risk of disease through effects on intermediate molecular phenotypes.

Max Diehn

Radiation Oncology, Stanford Cancer Center, Stem Cell Bio Regenerative Med
Associate Professor, Vice Chair of Research, Division Chief of Radiation & Cancer Biology
View in Stanford Profiles

Radiation Oncology, Stanford Cancer Center, Stem Cell Bio Regenerative Med


Last Updated: August 28, 2020

The overarching research goal of the Diehn lab is to develop and translate novel diagnostic assays and therapies to improve personalized treatment of cancer patients. We have a major focus on the development and application of liquid biopsy technologies for human cancers, with a particular emphasis on lung cancers and circulating tumor DNA (ctDNA). We also investigate mechanisms of treatment resistance to radiotherapy, immunotherapy, and targeted agents. Most of our research projects start by identifying an unmet need in the clinical management of cancer patients that we then try to solve via development or application of novel technologies. We use genomics, bioinformatics, stem cell biology, genome editing, mouse genetics, and preclinical cancer models in our work. Discoveries from our group are currently being tested in multiple clinical trials at Stanford and elsewhere in order to translate them into the clinic.

  • Cancer Etiology, Prevention, Detection and Diagnosis
  • Institutional Training Grant in Genome Science
  • Postdoctoral Training in the Radiation Sciences

Max Diehn

Radiation Oncology, Stanford Cancer Center, Stem Cell Bio Regenerative Med
Associate Professor, Vice Chair of Research, Division Chief of Radiation & Cancer Biology
View in Stanford Profiles

Radiation Oncology, Stanford Cancer Center, Stem Cell Bio Regenerative Med


Last Updated: August 28, 2020

The overarching research goal of the Diehn lab is to develop and translate novel diagnostic assays and therapies to improve personalized treatment of cancer patients. We have a major focus on the development and application of liquid biopsy technologies for human cancers, with a particular emphasis on lung cancers and circulating tumor DNA (ctDNA). We also investigate mechanisms of treatment resistance to radiotherapy, immunotherapy, and targeted agents. Most of our research projects start by identifying an unmet need in the clinical management of cancer patients that we then try to solve via development or application of novel technologies. We use genomics, bioinformatics, stem cell biology, genome editing, mouse genetics, and preclinical cancer models in our work. Discoveries from our group are currently being tested in multiple clinical trials at Stanford and elsewhere in order to translate them into the clinic.

  • Cancer Etiology, Prevention, Detection and Diagnosis
  • Institutional Training Grant in Genome Science
  • Postdoctoral Training in the Radiation Sciences

Max Diehn

Radiation Oncology, Stanford Cancer Center, Stem Cell Bio Regenerative Med
Associate Professor, Vice Chair of Research, Division Chief of Radiation & Cancer Biology
View in Stanford Profiles

Radiation Oncology, Stanford Cancer Center, Stem Cell Bio Regenerative Med


Last Updated: August 28, 2020

The overarching research goal of the Diehn lab is to develop and translate novel diagnostic assays and therapies to improve personalized treatment of cancer patients. We have a major focus on the development and application of liquid biopsy technologies for human cancers, with a particular emphasis on lung cancers and circulating tumor DNA (ctDNA). We also investigate mechanisms of treatment resistance to radiotherapy, immunotherapy, and targeted agents. Most of our research projects start by identifying an unmet need in the clinical management of cancer patients that we then try to solve via development or application of novel technologies. We use genomics, bioinformatics, stem cell biology, genome editing, mouse genetics, and preclinical cancer models in our work. Discoveries from our group are currently being tested in multiple clinical trials at Stanford and elsewhere in order to translate them into the clinic.

  • Cancer Etiology, Prevention, Detection and Diagnosis
  • Institutional Training Grant in Genome Science
  • Postdoctoral Training in the Radiation Sciences

Matthias Ihme

Mechanical Engineering
Professor
View in Stanford Profiles

Mechanical Engineering


Last Updated: January 12, 2022

Research activities in our group focus on the computational modeling and experimental analysis of turbulent and chemically reacting flows. Applications include propulsion systems, renewable energy, carbon sequestration, and high-speed and multiphase flows. Particular emphasis is directed towards improving the fundamental understanding of underlying physical processes involving the coupling between turbulence, reaction chemistry, pollutant formation and noise emission. Our research approach combines classical theoretical analysis tools (including linear stability analysis, rapid distortion theory, and stochastic models), numerical models, and the utilization of direct numerical simulation (DNS) results for the development, analysis, and validation of computational models. Current research interests include:

  • Fundamental analysis of non-equilibrium and supercritical flows
  • Heat-transfer and boundary layers
  • High-order numerical techniques for chemically reacting flows
  • Development of models for application to kinetics-controlled combustion, including auto-ignition, low-temperature combustion, and combustion-dynamic processes
  • Particle-laden flows and atmospheric entry
  • Heterogeneous flows in micro-, meso-, and nano-porous flows
  • CO2 capture and sequestration

Another active area of research involves the experimental analysis of ultrafast non-equilibrium processes using X-ray diffraction and spectroscopy, specfically focusing on sub-picosecond physico-chemical processes in complex fluids and chemical systems. For this, we're closely working with the SLAC National Accelerator Laboratory, the Advanced Light Source at LBNL and other facility to perform X-ray experiments.

 

 

Matthias Ihme

Mechanical Engineering
Professor
View in Stanford Profiles

Mechanical Engineering


Last Updated: November 29, 2021

Our research is concerned with the computational modeling and the experimental investigation of fluids in complex environments, including chemical reactions, phase transition, and heterogeneous flow environment. We addressing fundamental scientific questions, problems pertaining to energy-conversion and propulsion, as well as environmental issues related to wildfire predictions, carbon-capture and sequestration, and water desalination. We are developing advanced numerical algorithms, detailed physical models, and physics-informed and data-driven methods. Experimentally, our research employs X-ray absorption and scattering techniques  that involve X-ray Computed Tomography at laboratory and synchrotron sources, X-ray spectroscopy, and ultrafast X-ray techniques at the Linac Coherent Light Source to observe processes at sub-picosecond timescales.

Department URL:
https://me.stanford.edu

Matthias Garten

Microbiology and Immunology, Bioengineering
Assistant Professor
View in Stanford Profiles

Microbiology and Immunology, Bioengineering


Last Updated: August 31, 2023

With a creative, collaborative, biophysical mindset, we aim to understand the ability of parasites to interface with their host-cell to a point at which we can exploit the mechanisms not only for finding cures against the disease the parasites cause but also to make parasite mechanisms a tool that we can use to engineer the host’s cells. By developing approaches that allow a quantitative understanding and manipulation of molecular transport our research transforms parasites from agents of disease to tools for health.

Specifically, we are studying how the malaria parasite takes control over red blood cells. By learning the biophysical principles of transport in between the host and the parasite we can design ways to kill the parasite or exploit it to reengineer red blood cells. The transport we study is broadly encompassing everything from ions to lipids and proteins. We use variations of quantitative microscopy and electrophysiology to gain insight into the unique strategies the parasite evolved to survive.

  • Molecular Basis of Host Parasite Interaction

Matthias Garten

Microbiology and Immunology, Bioengineering
Assistant Professor
View in Stanford Profiles

Microbiology and Immunology, Bioengineering


Last Updated: August 31, 2023

With a creative, collaborative, biophysical mindset, we aim to understand the ability of parasites to interface with their host-cell to a point at which we can exploit the mechanisms not only for finding cures against the disease the parasites cause but also to make parasite mechanisms a tool that we can use to engineer the host’s cells. By developing approaches that allow a quantitative understanding and manipulation of molecular transport our research transforms parasites from agents of disease to tools for health.

Specifically, we are studying how the malaria parasite takes control over red blood cells. By learning the biophysical principles of transport in between the host and the parasite we can design ways to kill the parasite or exploit it to reengineer red blood cells. The transport we study is broadly encompassing everything from ions to lipids and proteins. We use variations of quantitative microscopy and electrophysiology to gain insight into the unique strategies the parasite evolved to survive.

  • Molecular Basis of Host Parasite Interaction

Matthew Wheeler

Med: Cardiovascular Medicine
Assistant Professor
View in Stanford Profiles

Med: Cardiovascular Medicine


Last Updated: November 29, 2021

I am a physician scientist with interests in cardiomyopathies, rare and undiagnosed diseases, therapeutics and genomics. I have research training in myocardial and skeletal muscle biology and genetics, genomics, and multi-scale networks. In addition to my research training, I am a physician with interest and experience treating patients with hypertrophic cardiomyopathy, neuromuscular disease associated cardiomyopathies, and inherited dilated cardiomyopathies. I have clinical training in medicine, cardiology, cardiovascular genetics, and advanced heart failure and transplant cardiology. I have extensive translational science efforts, as site PI for ongoing clinical trials for hypertrophic cardiomyopathy and dilated cardiomyopathy and for cardiomyopathy consortia including NONCOMPACT, PPCM and the Precision Medicine Study/DCM Consortium. I am Co-PI of Stanford’s NIH-funded Center for Undiagnosed Diseases, a clinical site of the Undiagnosed Diseases Network. I am also Co-PI of the NIH-funded Bioinformatics Center of the Molecular Transducers of Physical Activity Consortium. I pursue projects and collaborations at the intersection of striated muscle genetics, genomics, therapeutics and clinical investigation.

Department URL:
https://med.stanford.edu/cvmedicine.html

  • Training in Myocardial Biology at Stanford (TIMBS)

Martha Cyert

Biology
Professor
View in Stanford Profiles

Biology


Last Updated: January 26, 2022

We discover and elucidate new Ca2+-regulated signaling pathways in humans by studying calcineurin, the conserved Ca2+/calmodulin-regulated protein phosphatase. The calcineurin phosphatase dephosphorylates proteins only when Ca2+ signaling is triggered, for example by a hormone, growth factor, neurotransmitter etc. Previous work from the Cyert lab showed how calcineurin allows yeast cells to survive environmental stress (Goldman et al, 2014, Molecular Cell). Currently, we are studying human calcineurin which is ubiquitously expressed and plays critical roles throughout the body, but especially in the nervous, cardiac and immune systems. Calcineurin is best known for activating the adaptive immune response by dephosphorylating the NFAT transcription factors, and is the target of widely prescribed immunosuppressant drugs, FK506 (tacrolimus) and Cyclosporin A. However, these drugs cause many adverse effects due to inhibition of calcineurin in non-immune tissues, where the majority of calcineurin substrates and functions remain to be discovered. We are using a variety of experimental and computational strategies to systematically map human calcineurin signaling pathways in healthy and diseased cells. These rely on identifying Short Linear peptide Motif (SLiMs), i.e. highly variable sequences that reside in regions of intrinsic disorder and mediate specific interactions of substrates and regulators with calcineurin. These approaches have revealed surprising roles for calcineurin  that we are currently studying: in Notch signaling, trafficking though nuclear pores, at centrosomes/cilia, and in regulating phosphoinositide signaling at membranes. A new project is studying calcineurin's role in pancreatitis, where we are identifying calcineurin substrates that mediate the major pathophysiological events that occur during pancreatitis.  We are also interested in understanding how reversible protein lipidation (palmitoylation) is regulated and how palmitoylation impacts calcineurin signaling at membranes by modifying calcineurin itself and some of its regulators.

To learn more about our studies, see our recent papers: Wigington, Roy et al, 2020, Molecular Cell (https://pubmed.ncbi.nlm.nih.gov/32645368/) and Ulengin-Talkish et al, Nature Communications (https://www.nature.com/articles/s41467-021-26326-4).

  • Other

Martha Cyert

Biology
Professor
View in Stanford Profiles

Biology


Last Updated: July 13, 2022

By studying calcineurin, the conserved Ca2+/calmodulin-regulated protein phosphatase, we aim to discover and elucidate new Ca2+-regulated signaling pathways in humans. The calcineurin phosphatase dephosphorylates proteins only when Ca2+ signaling is triggered, for example by a hormone, growth factor, neurotransmitter etc. Previous work from the Cyert lab discovered how calcineurin allows yeast cells to survive environmental stress (Goldman et al, 2014, Molecular Cell). Currently, we are studying human calcineurin which is ubiquitously expressed and plays critical roles throughout the body, but especially in the nervous, cardiac and immune systems. Calcineurin is best known for activating the adaptive immune response by dephosphorylating the NFAT transcription factors, and is the target of widely prescribed immunosuppressant drugs, FK506 (tacrolimus) and Cyclosporin A. However, these drugs cause many adverse effects due to inhibition of calcineurin in non-immune tissues, where the majority of calcineurin substrates and functions remain to be discovered. We are using a variety of experimental and computational strategies to systematically map human calcineurin signaling pathways in healthy and diseased cells. We have uncovered surprising roles for calcineurin in Notch signaling, regulation of transport though nuclear pores, and at centrosomes. See our recent paper (Wigington, Roy et al, 2020, Molecular Cell) to learn more about our studies.

Marlene Rabinovitch

Pediatrics
Professor

Pediatrics


Last Updated: April 22, 2021

The laboratory of Dr. Marlene Rabinovitch, Professor of Pediatrics (Cardiology) is seeking a highly-motivated and accomplished postdoctoral scholar to join their team of investigators  in conjunction with the Basic Science and Engineering (BASE) Initiative  of the Children’s Heart Center at Stanford University.

A successful applicant will be immersed in cutting-edge molecular, sequencing, imaging and high throughput ‘omics’  technologies applied to human vascular and immune cells  and in their application  to mouse and rat models of  human vascular disease with a focus on pulmonary arterial hypertension.  Our research interests relate to the impact of metabolic reprogramming on gene regulation and RNA translation, the impact of changes in shear stress and DNA damage on the epigenome, bioengineering blood vessels, immune and vascular cell interactions .  We incorporate transgenic models of disease, iPSC generated vascular and immune cells, gene editing, high-throughput drug testing, single cell RNA Sequencing and high dimensional single cell mapping of tissues.  Please consult our website for more details.

All our projects offer opportunities for co-mentoring in Basic, Engineering and Cardiovascular Science.

Mark Skylar-Scott

Bioengineering
Assistant Professor
View in Stanford Profiles

Bioengineering


Last Updated: March 03, 2021

The Skylar-Scott Lab specializes in cardiovascular tissue biomanufacturing, seeking to push the complexity and scale at which tissue can be designed and manufactured on demand. By integrating high-throughput culture of designer organoids with new machines and methods for advanced 3D bioprinting, our laboratory seeks to enhance the maturation and function of vascularized cardiac tissues in vitro and in vivo.

Our lab is embedded at the intersection of synthetic biology, tissue engineering, and 3D printing. We are always seeking new students and postdocs with a demonstrated passion for rethinking how we make things, with relevant expertise in bioengineering, mechanical engineering, or materials science.

Mark A. Kay

Pediatrics
Professor
View in Stanford Profiles

Pediatrics


Last Updated: November 09, 2021

The Kay lab is interested in Gene Transfer, Genome Editing and Non-coding RNA biology.  The current research is studying: 1) rAAV vectors specifically:   developing capsid libraries, chemical modification of  vectors and screening approaches that will provide improved vectors for human application;  molecular mechanism of discordance in vector transduction between species;  molecular mechanisms involved in AAV transduction;  and chromatin formation of gene transfer vector genomes in primary tissues. 2) Approaches to achieve therapeutic levels of  non-nuclease mediated genome editing using rAAV vectors.  3)  Non coding RNAs: association between long-non coding RNAs and miRNA biogenesis in whole tissues;  tRNA derived small RNAs and their role in regulating ribosome biogenesis in cancer; and role of Line1 structural RNAs in controlling gene expression.

  • Institutional Training Grant in Genome Science

Marion Buckwalter

Neurology & Neurological Sci
Professor
View in Stanford Profiles

Neurology & Neurological Sci


Last Updated: June 23, 2022

I'm interested in neuroinflammation and stroke, especially the effects of inflammation on longer term outcomes after stroke. Studies involve mice and humans, and basic mechanistic studies as well as development of potential therapies for humans. Check out the websites above for more information! My lab is welcoming of people from all backgrounds, and promotes team-work and mutual support.

I am also a co-PI on the "Pathways to Neurosciences" program (https://neuroscience.stanford.edu/research/training/pathways-neurosciences), which is not a fellowship but rather a 2-year peer mentoring program to support and provide leadership training to early postdocs and late-stage graduate students who self-identify as coming from groups underrepresented in neuroscience. Please check us out and consider joining after you are on campus!

Marion Buckwalter

Neurology & Neurological Sci
Professor
View in Stanford Profiles

Neurology & Neurological Sci


Last Updated: July 13, 2022

My work focuses on neuroimmunology and how the central and peripheral immune system responds to brain injury, and in particular, stroke. We study how microglia and astrocytes respond with an emphasis on both the basic biology and clinically-relevant outcomes. We are also interested in how stroke can provoke long-lasting adaptive immune responses that lead to post-stroke dementia, a serious and currently untreatable consequence of stroke. The basic science lab performs primarily studies in mice and on human samples, while the Stanford Stroke Recovery Program (https://med.stanford.edu/neurology/divisions/stroke/recovery.html) enrolls stroke survivors and collects clinical data and human samples to ask whether findings in mice are applicable to humans. My lab values diversity of all types and there are projects available for postdoctoral scholars either in mouse or human studies.

Maria Grazia Roncarolo

Pediatrics, Med: Bone Marrow Transplant, Stem Cell Bio Regenerative Med
Professor
View in Stanford Profiles

Pediatrics, Med: Bone Marrow Transplant, Stem Cell Bio Regenerative Med


Last Updated: February 23, 2024

Roncarolo laboratory is exploring the basic biology and translational applications of human type 1 regulatory cells (Tr1). We are using engineered Tr1, ex vivo Tr1, and alloantigen-specific Tr1 to uncover the molecular frameworks that govern Tr1 identity, differentiation and function. We are also translating Tr1 into the clinic. First, Tr1 can be used as a supportive cell therapy to enhance stem cell engraftment and immune reconstitution after hematopoietic stem cell transplantation (HSCT). Alloantigen-specific Tr1, designed to prevent graft-vs-host disease (GvHD) after allogeneic HSCT, are already being tested in a phase I/II clinical trial (NCT03198234). Second, we are investigating the mechanisms of action and clinical potential of the engineered Tr1 called CD4(IL-10) or LV-10, generated by lentiviral transduction of CD4 T cells with IL10 gene. Besides their immunosuppressive and anti-GvHD properties, LV-10 lyse primary acute myeloid leukemia (AML) cells and delay myeloid leukemia progression in vivo. We are exploring LV-10 as a novel cell immunotherapy for AML. Finally, we are interested in curing inborn errors of immunity by stem cell transplantation or autologous stem cell gene correction. We are testing a gene editing strategy to correct pathogenic mutations in IL10 and IL10 receptor genes, which cause severe and debilitating VEO-IBD (very early onset inflammatory bowel disease) in infants and young children.

  • Training in Pediatric Nonmalignant Hematology and Stem Cell Biology

Maria Grazia Roncarolo

Pediatrics, Med: Bone Marrow Transplant, Stem Cell Bio Regenerative Med
Professor
View in Stanford Profiles

Pediatrics, Med: Bone Marrow Transplant, Stem Cell Bio Regenerative Med


Last Updated: February 23, 2024

Roncarolo laboratory is exploring the basic biology and translational applications of human type 1 regulatory cells (Tr1). We are using engineered Tr1, ex vivo Tr1, and alloantigen-specific Tr1 to uncover the molecular frameworks that govern Tr1 identity, differentiation and function. We are also translating Tr1 into the clinic. First, Tr1 can be used as a supportive cell therapy to enhance stem cell engraftment and immune reconstitution after hematopoietic stem cell transplantation (HSCT). Alloantigen-specific Tr1, designed to prevent graft-vs-host disease (GvHD) after allogeneic HSCT, are already being tested in a phase I/II clinical trial (NCT03198234). Second, we are investigating the mechanisms of action and clinical potential of the engineered Tr1 called CD4(IL-10) or LV-10, generated by lentiviral transduction of CD4 T cells with IL10 gene. Besides their immunosuppressive and anti-GvHD properties, LV-10 lyse primary acute myeloid leukemia (AML) cells and delay myeloid leukemia progression in vivo. We are exploring LV-10 as a novel cell immunotherapy for AML. Finally, we are interested in curing inborn errors of immunity by stem cell transplantation or autologous stem cell gene correction. We are testing a gene editing strategy to correct pathogenic mutations in IL10 and IL10 receptor genes, which cause severe and debilitating VEO-IBD (very early onset inflammatory bowel disease) in infants and young children.

  • Training in Pediatric Nonmalignant Hematology and Stem Cell Biology

Maria Grazia Roncarolo

Pediatrics, Med: Bone Marrow Transplant, Stem Cell Bio Regenerative Med
Professor
View in Stanford Profiles

Pediatrics, Med: Bone Marrow Transplant, Stem Cell Bio Regenerative Med


Last Updated: February 23, 2024

Roncarolo laboratory is exploring the basic biology and translational applications of human type 1 regulatory cells (Tr1). We are using engineered Tr1, ex vivo Tr1, and alloantigen-specific Tr1 to uncover the molecular frameworks that govern Tr1 identity, differentiation and function. We are also translating Tr1 into the clinic. First, Tr1 can be used as a supportive cell therapy to enhance stem cell engraftment and immune reconstitution after hematopoietic stem cell transplantation (HSCT). Alloantigen-specific Tr1, designed to prevent graft-vs-host disease (GvHD) after allogeneic HSCT, are already being tested in a phase I/II clinical trial (NCT03198234). Second, we are investigating the mechanisms of action and clinical potential of the engineered Tr1 called CD4(IL-10) or LV-10, generated by lentiviral transduction of CD4 T cells with IL10 gene. Besides their immunosuppressive and anti-GvHD properties, LV-10 lyse primary acute myeloid leukemia (AML) cells and delay myeloid leukemia progression in vivo. We are exploring LV-10 as a novel cell immunotherapy for AML. Finally, we are interested in curing inborn errors of immunity by stem cell transplantation or autologous stem cell gene correction. We are testing a gene editing strategy to correct pathogenic mutations in IL10 and IL10 receptor genes, which cause severe and debilitating VEO-IBD (very early onset inflammatory bowel disease) in infants and young children.

  • Training in Pediatric Nonmalignant Hematology and Stem Cell Biology

Margaret Fuller

Developmental Biology, Genetics, Gynecology and Obstetrics, Stem Cell Bio Regenerative Med
Professor
View in Stanford Profiles

Developmental Biology, Genetics, Gynecology and Obstetrics, Stem Cell Bio Regenerative Med


Last Updated: February 27, 2023

We study the genetic and molecular mechanisms that regulate proliferation and differentiation in adult stem cell lineages, using the Drosophila male germ line as a model.  Our current work is focused on the switch from mitosis to meiosis and how the new gene expression program for cell type specific terminal differentiation is turned on.  One emerging surprise is the potential role of alternative processing of nascent mRNAs in setting up the dramatic change in cell state

  • Institutional Training Grant in Genome Science
  • Postgraduate Training Program in Epithelial Biology
  • Other

Margaret Fuller

Developmental Biology, Genetics, Gynecology and Obstetrics, Stem Cell Bio Regenerative Med
Professor
View in Stanford Profiles

Developmental Biology, Genetics, Gynecology and Obstetrics, Stem Cell Bio Regenerative Med


Last Updated: February 27, 2023

We study the genetic and molecular mechanisms that regulate proliferation and differentiation in adult stem cell lineages, using the Drosophila male germ line as a model.  Our current work is focused on the switch from mitosis to meiosis and how the new gene expression program for cell type specific terminal differentiation is turned on.  One emerging surprise is the potential role of alternative processing of nascent mRNAs in setting up the dramatic change in cell state

  • Institutional Training Grant in Genome Science
  • Postgraduate Training Program in Epithelial Biology
  • Other

Margaret Fuller

Developmental Biology, Genetics, Gynecology and Obstetrics, Stem Cell Bio Regenerative Med
Professor
View in Stanford Profiles

Developmental Biology, Genetics, Gynecology and Obstetrics, Stem Cell Bio Regenerative Med


Last Updated: February 27, 2023

We study the genetic and molecular mechanisms that regulate proliferation and differentiation in adult stem cell lineages, using the Drosophila male germ line as a model.  Our current work is focused on the switch from mitosis to meiosis and how the new gene expression program for cell type specific terminal differentiation is turned on.  One emerging surprise is the potential role of alternative processing of nascent mRNAs in setting up the dramatic change in cell state

  • Institutional Training Grant in Genome Science
  • Postgraduate Training Program in Epithelial Biology
  • Other

Margaret Fuller

Developmental Biology, Genetics, Gynecology and Obstetrics, Stem Cell Bio Regenerative Med
Professor
View in Stanford Profiles

Developmental Biology, Genetics, Gynecology and Obstetrics, Stem Cell Bio Regenerative Med


Last Updated: February 27, 2023

We study the genetic and molecular mechanisms that regulate proliferation and differentiation in adult stem cell lineages, using the Drosophila male germ line as a model.  Our current work is focused on the switch from mitosis to meiosis and how the new gene expression program for cell type specific terminal differentiation is turned on.  One emerging surprise is the potential role of alternative processing of nascent mRNAs in setting up the dramatic change in cell state

  • Institutional Training Grant in Genome Science
  • Postgraduate Training Program in Epithelial Biology
  • Other

Manpreet Singh

Psyc: Behavioral Medicine
Associate Professor
View in Stanford Profiles

Psyc: Behavioral Medicine


Last Updated: February 23, 2024

If mood symptoms are identified early in life, the opportunity exists to prevent them from progressing to more disabling chronic conditions. Dr. Singh has developed a scientifically-informed comprehensive framework to accurately diagnose and treat childhood-onset depression and other mood disorders before or soon after they present. The Pediatric Emotion And Resilience Lab uses a multimodal neurobiological approach combining neuroimaging, affective neuroscience, and rigorous clinical assessment to understand the mechanisms of risk and resilience in children. We are looking for postdoctoral candidates from the fields of psychiatry, psychology, pediatrics, neurology, genetics, neuroscience, developmental biology, computer science and related fields who seek to improve or expand their ability to conduct interdisciplinary and translational research in pediatric mood disorders.

  • A Biobehavioral Research Training Program
  • Research Training for Child Psychiatry and Neurodevelopment

Manish Saggar

Psyc: Child Psychiatry, Neuroscience Institute
Assistant Professor
View in Stanford Profiles

Psyc: Child Psychiatry, Neuroscience Institute


Last Updated: February 04, 2023

The overarching goal of Brain Dyanamics Lab is to develop computational methods that could allow for anchoring psychiatric diagnosis into biological features (e.g., neural circuits, spatiotemporal neurodynamics). The lab is funded through an NIH Director’s New Innovator Award (DP2), an NIMH R01, and a faculty scholar award from Stanford’s Maternal and Child Health Research Institute. Our lab excels in developing data-driven computational methods to generate clinically and behaviorally relevant insights from high-dimensional biological data (e.g., neuroimaging) without necessarily averaging the data at the outset. The lab also actively pursue developing novel technologies for experimental design and data collection for enhancing human cognition (e.g., creativity and collaboration). Lastly, the lab also uses large-scale biophysical network modeling approaches to study effects of neuromodulation via TMS and pharmacology (e.g., psychedelics).

  • Research Training for Child Psychiatry and Neurodevelopment

Manish Saggar

Psyc: Child Psychiatry, Neuroscience Institute
Assistant Professor
View in Stanford Profiles

Psyc: Child Psychiatry, Neuroscience Institute


Last Updated: February 04, 2023

The overarching goal of Brain Dyanamics Lab is to develop computational methods that could allow for anchoring psychiatric diagnosis into biological features (e.g., neural circuits, spatiotemporal neurodynamics). The lab is funded through an NIH Director’s New Innovator Award (DP2), an NIMH R01, and a faculty scholar award from Stanford’s Maternal and Child Health Research Institute. Our lab excels in developing data-driven computational methods to generate clinically and behaviorally relevant insights from high-dimensional biological data (e.g., neuroimaging) without necessarily averaging the data at the outset. The lab also actively pursue developing novel technologies for experimental design and data collection for enhancing human cognition (e.g., creativity and collaboration). Lastly, the lab also uses large-scale biophysical network modeling approaches to study effects of neuromodulation via TMS and pharmacology (e.g., psychedelics).

  • Research Training for Child Psychiatry and Neurodevelopment

Manish Saggar

Center for Advanced Studies in the Behavioral Sciences
Assistant Professor
View in Stanford Profiles

Center for Advanced Studies in the Behavioral Sciences


Last Updated: December 01, 2021

We are a computational neuropsychiatry lab dedicated to developing computational methods to better understand brain’s overall dynamical organization in healthy and patient populations. We employ algorithms from a wide range of fields, including Applied Mathematics, Econometrics, Machine Learning, Biophysics, and Network Science.

We have immediate multiple openings for postdoc and research engineer/scientist positions. Please contact Dr. Manish Saggar (saggar@staford.edu), Assistant Professor (Research) of Psychiatry and Behavioral Sciences (Interdisciplinary Brain Science Research), for any questions and for applications. 

See here for more details - https://braindynamicslab.github.io/misc/join/

 

Lucy Erin O'Brien

Molecular & Cellular Phys, Stem Cell Bio Regenerative Med
Assistant Professor
View in Stanford Profiles

Molecular & Cellular Phys, Stem Cell Bio Regenerative Med


Last Updated: August 31, 2020

Mature organs respond to the body's changing needs by moving between different 'states' of cellular flux.
The same organ exhibits different kinds of cell flux over time. This is because flux is dynamically tuned to optimize organ function. At homeostasis, cell addition balances loss, giving rise to equilibrium. Upon environmental change, transient disequilibrium promotes physiological growth or shrinkage. When disequilibrium becomes chronic, it leads to pathogenic resizing and disease. We conceptualize these differences as 'organ states' that form a phase space.

What does organ-scale cellular flux look like, and how do these dynamics arise?
We know many molecular signals that impact cellular flux. Yet, we have scarcely begun to discover how these signals alter the 'lifecycle' of individual cells or understand how cells' life cycles integrate to create diverse organ states. For most organs, even basic spatiotemporal features of these cell behaviors remain mysterious.

Our goal is to explain—and ultimately even predict—how large populations of individual cells act to create diverse organ states in response to external change. We believe that the cell dynamics of adult organs can be understood in the granular way that we currently understand embryonic gastrulation. Toward this vision, we build new experimental approaches and conceptual models to decipher how cell life cycles and molecular signaling together create the organ phase space.

The fly gut is our testing ground for probing cell dynamics at the organ-scale…
The adult Drosophila midgut, or fly gut, is a stem-cell based digestive organ. Its relative simplicity (~10,000 cells), extreme genetic tractability, and ease of handling make it ideal for exploring how single-cell behaviors scale to produce whole-organ phenotypes. Because the organ phase space and the cellular life cycle are general features of adult organs, the lessons we learn from the fly gut will provide a general template for organs in other animals, including humans.

…and is a powerful model to study how dynamic cell flux maintains healthy organ form.
The fly gut is also an archetypical example of an epithelial tube, which is both the most primitive organ form and the form of most organs in our own bodies. As our ability to grow human organs in a dish becomes closer to reality, understanding how general principles of epithelial organization operate with the particular dynamics of adult organs becomes crucial for designing better, safer organ therapies. We leverage these well-understood principles of epithelial organization in order to study how the dynamics of cellular flux in the fly gut both reinforce and respond to organ shape.

Lucy Erin O'Brien

Molecular & Cellular Phys, Stem Cell Bio Regenerative Med
Assistant Professor
View in Stanford Profiles

Molecular & Cellular Phys, Stem Cell Bio Regenerative Med


Last Updated: August 31, 2020

Mature organs respond to the body's changing needs by moving between different 'states' of cellular flux.
The same organ exhibits different kinds of cell flux over time. This is because flux is dynamically tuned to optimize organ function. At homeostasis, cell addition balances loss, giving rise to equilibrium. Upon environmental change, transient disequilibrium promotes physiological growth or shrinkage. When disequilibrium becomes chronic, it leads to pathogenic resizing and disease. We conceptualize these differences as 'organ states' that form a phase space.

What does organ-scale cellular flux look like, and how do these dynamics arise?
We know many molecular signals that impact cellular flux. Yet, we have scarcely begun to discover how these signals alter the 'lifecycle' of individual cells or understand how cells' life cycles integrate to create diverse organ states. For most organs, even basic spatiotemporal features of these cell behaviors remain mysterious.

Our goal is to explain—and ultimately even predict—how large populations of individual cells act to create diverse organ states in response to external change. We believe that the cell dynamics of adult organs can be understood in the granular way that we currently understand embryonic gastrulation. Toward this vision, we build new experimental approaches and conceptual models to decipher how cell life cycles and molecular signaling together create the organ phase space.

The fly gut is our testing ground for probing cell dynamics at the organ-scale…
The adult Drosophila midgut, or fly gut, is a stem-cell based digestive organ. Its relative simplicity (~10,000 cells), extreme genetic tractability, and ease of handling make it ideal for exploring how single-cell behaviors scale to produce whole-organ phenotypes. Because the organ phase space and the cellular life cycle are general features of adult organs, the lessons we learn from the fly gut will provide a general template for organs in other animals, including humans.

…and is a powerful model to study how dynamic cell flux maintains healthy organ form.
The fly gut is also an archetypical example of an epithelial tube, which is both the most primitive organ form and the form of most organs in our own bodies. As our ability to grow human organs in a dish becomes closer to reality, understanding how general principles of epithelial organization operate with the particular dynamics of adult organs becomes crucial for designing better, safer organ therapies. We leverage these well-understood principles of epithelial organization in order to study how the dynamics of cellular flux in the fly gut both reinforce and respond to organ shape.

Lu Chen

Neurosurgery
Professor
View in Stanford Profiles

Neurosurgery


Last Updated: June 24, 2022

My research program aims to understand the cellular and molecular mechanisms that underlie synapse function during behavior in the developing and mature brain, and how synapse function is altered in neurodevelopmental disorders. Within this broad research area, I am specifically interested in the following three overall themes.
1. Investigate the synaptic signaling mechanisms regulating homeostatic synaptic plasticity, the role of postsynaptic protein translation in this control, and how these signaling mechanisms are compromised in neurodevelopmental disorders. Toward this goal, we combine molecular, biochemical, electrophysiological, and cell biological approaches to examine retinoic acid signaling pathways that mediate activity-dependent regulation of synaptic function, both globally at a whole cell level or locally with each synapse as an independent computational unit of the neuron. We also explore how genetic mutations implicated in neurodevelopmental disorders alter homeostatic synaptic plasticity in both mouse models and human neurons derived from patient iPS cells.
2. Investigate interactions between retinoic acid-mediated homeostatic synaptic plasticity and other forms of long-lasting synaptic changes (e.g. Hebbian plasticity), how this interaction impacts learning and memory formation at behavioral levels, and how defective homeostatic synaptic plasticity underlies cognitive deficits in neurodevelopmental disorders. Our investigation of molecular mechanisms underlying homeostatic synaptic plasticity provides unique molecular tools with which we could begin to manipulate homeostatic plasticity specifically and examine its impact on Hebbian plasticity. We use both behavioral assays and slice electrophysiology as our functional readouts. Moreover, we developed protocols to investigate memory recall accuracy using activity-dependent genetic labeling in behaving animals, thus further exploring the mechanisms of memory encoding (or lack thereof in the case of disease models) at neural network levels.
3. Investigate synaptic and circuit changes in spinal dorsal horn in peripheral nerve injury-induced neuropathic pain models. We extend our investigations of synaptic plasticity mechanisms from the brain circuits to spinal dorsal horn circuits because we believe some of the most fundamental molecular mechanisms underlying experience-dependent synaptic modifications are shared between similar types of synapses in different regions of the CNS. Indeed, our recent work on synaptic changes driving nerve injury-induced spinal disinhibition supports this notion. The current application builds upon ample preliminary data and applies knowledge generated from our studies in the brain circuits to explore spinal circuits. 
To achieve these goals, we combine expertise spanning molecular and cellular biology, protein biochemistry, stem cell biology, slice electrophysiology, in vivo imaging and MEA recordings, and behavioral assays.

  • Research Training for Child Psychiatry and Neurodevelopment

Longzhi Tan

Neurobiology
Incoming Assistant Professor
View in Stanford Profiles

Neurobiology


Last Updated: June 30, 2022

How do cells in our nervous system develop highly specialized functions after birth, and how do they degenerate as we age? An emerging molecular mechanism is 3D genome architecture—the folding of 6 billion base pairs of DNA (~2 meters) into a tiny cell nucleus (~10 microns). This folding can strategically position genes and their regulatory elements in 3D to orchestrate dynamic gene expression, and has been implicated in many developmental and degenerative diseases (e.g., autism, schizophrenia, Alzheimer’s). However, traditional technologies and algorithms struggle to capture the full complexity of genome architecture of a single cell, and the enormous heterogeneity between cells. In addition, most studies interrogate genome architecture in vitro, taking cells out of their physiological context. The Tan Laboratory of 3D Genomics at Stanford Neurobiology studies the single-cell 3D genome architectural basis of neurodevelopment and aging by developing the next generation of in vivo multi-omic assays and algorithms, and applying them to the human and mouse cerebellum and beyond (e.g., cancer, immunology).

Lisa Goldman Rosas

Epidemiology and Population Health
Assistant Professor
View in Stanford Profiles

Epidemiology and Population Health


Last Updated: September 06, 2023

The goal of the Food for Health Equity Lab is to generate evidence of the effectiveness of 'Food as Medicine' programs that can be implemented in diverse healthcare settings to address food insecurity in a way that improves patient outcomes. This work particularly focuses on improving nutrition and reducing chronic diseases within under-resourced communities and communities of color. The lab includes diverse studies including two large-scale randomized controlled trials, a large scale evaluation of a produce prescription program, and multiple pilot studies in different clinical and demographic populations. We use a community-based participatory research orientation and have a Community Advisory Board for our project. The ultimate goal of our research is to inform health policy that will support programs that address food insecurity and reduce inequities in chronic disease. 

Liqun Luo

Biology
Professor
View in Stanford Profiles

Biology


Last Updated: February 03, 2022

The human brain contains about 100 billion neurons, each making thousands of synaptic connections. While individual neurons can themselves perform sophisticated information processing, it is the assembly of neurons into circuits via specific patterns of synaptic connections that endows our brain with the computational capacity to sense, act, think, and remember.

How are neurons organized into specialized circuits to perform specific functions? How are these circuits assembled during development? We are investigating these questions in the brains of the fruit fly (~100 thousand neurons) and mouse (~100 million neurons). We have developed molecular-genetic and viral tools, and are combining them with transcriptomic, proteomic, physiological, and behavioral approaches to study these problems.

  • Epilepsy Training Grant

Liang Feng

Molecular & Cellular Phys
Associate Professor
View in Stanford Profiles

Molecular & Cellular Phys


Last Updated: February 08, 2023

At the Feng Lab we are interested in the structure, dynamics and function of eukaryotic transport proteins mediating ions and major nutrients crossing the membrane, the kinetics and regulation of transport processes, the catalytic mechanism of membrane embedded enzymes and the development of small molecule modulators based on the structure and function of membrane proteins.

Lei Stanley Qi

Bioengineering
Associate Professor
View in Stanford Profiles

Bioengineering


Last Updated: January 27, 2023

We work on technology development for genome engineering, discovery-focused synthetic biology, and epigenetic gene therapy. We aim to develop new technologies for studying the mammalian genome and treating complex diseases.

For technology development, we are interested in novel technologies that reprogram the mammalian genome and epigenome. We developed the first nuclease-dead dCas9 from the natural CRISPR-Cas9 nuclease. We developed a series of CRISPR tools that greatly enriched the CRISPR toolbox and expanded genome engineering beyond editing. These tools include CRISPR interference (CRISPRi) and CRISPR activation (CRISPRa) for targeted gene activation and repression, LiveFISH for live imaging of DNA and RNA, CRISPR-GO for manipulating the 3D genome organization, and miniature Cas (CasMINI) and hyper-efficient Cas12a (hyperCas12a) for in vivo applications. We harness natural molecules for molecular engineering and evolve novel functions. These tools are broadly used by the community for research and and translational applications.

For discovery-focused synthetic biology, we apply synthetic biology to design and engineer molecules and molecular circuits in mammalian cells. We use synthetic systems to study how cells can be rationally designed as an 'engineering' entity and be harnesses for disease treatment. For example, we engineer T cells to detect new antigens to kill cancer cells or stem cells to integrate environment cues to determine cell fate. By engineering at the scale from molecular to cellular to organismal level, we hope to make synthetic biology a better discovery tool.

For epigenetic gene therapy, we combine epigenome engineering, synthetic biology, and disease models to develop novel therapy to treat cancer, neurodegeneration, and complex genetic diseases. We aim to reveal the importance of noncoding elements including enhancers in the regulation of genome and disease. We harness safe and powerful tools to precisely rewrite the epigenome marks to reverse or cure diseases. We developed PAC-MAN as a treatment to influenza and broad variants of SARS-CoV-2. We aim to greatly expand genome and epigenome engineering towards neurodegenerative diseases and complex diseases.

Le Cong

Pathology, Genetics
Assistant Professor
View in Stanford Profiles

Pathology, Genetics


Last Updated: January 31, 2023

Dr. Cong's group is developing novel technology for genome editing and single-cell genomics, leveraging scalable methods inspired by data science and machine learning and artificial intelligence.

His group has a focus on using these gene-editing tools to study immunological and neurological diseases. His work has led to one of the first FDA-approved clinical trials using CRISPR/Cas9 gene-editing for in vivo gene therapy. More recently, his group invented tools for cleavage-free large gene insertion via mining microbial recombination protein (Wang et al. 2022), and developed single-cell perturbating - tracking approach for studying cancer immunology and neuro-immunology (Hughes et al. 2022). We have also strong interest in using deep learning for predicting and designing gene-editing system and protein function (Hughes et al. 2022 and Yuan et al. 2023). Dr. Cong is a recipient of the NIH/NHGRI Genomic Innovator Award, a Baxter Foundation Faculty Scholar, and has been selected by Clarivate Web of Science as a Highly Cited Researcher.

  • Institutional Training Grant in Genome Science

Le Cong

Pathology, Genetics
Assistant Professor
View in Stanford Profiles

Pathology, Genetics


Last Updated: January 31, 2023

Dr. Cong's group is developing novel technology for genome editing and single-cell genomics, leveraging scalable methods inspired by data science and machine learning and artificial intelligence.

His group has a focus on using these gene-editing tools to study immunological and neurological diseases. His work has led to one of the first FDA-approved clinical trials using CRISPR/Cas9 gene-editing for in vivo gene therapy. More recently, his group invented tools for cleavage-free large gene insertion via mining microbial recombination protein (Wang et al. 2022), and developed single-cell perturbating - tracking approach for studying cancer immunology and neuro-immunology (Hughes et al. 2022). We have also strong interest in using deep learning for predicting and designing gene-editing system and protein function (Hughes et al. 2022 and Yuan et al. 2023). Dr. Cong is a recipient of the NIH/NHGRI Genomic Innovator Award, a Baxter Foundation Faculty Scholar, and has been selected by Clarivate Web of Science as a Highly Cited Researcher.

  • Institutional Training Grant in Genome Science

Lauren O'Connell

Biology, Neuroscience Institute
Assistant Professor

Biology, Neuroscience Institute


Last Updated: August 10, 2020

We study how genetic and environmental factors contribute to biological diversity and adaptation. We are particularly interested in understanding (1) how behavior evolves through changes in brain function and (2) how animal physiology evolves through repurposing existing cellular components.
Our mission is to perform rigorous, ethical, and ecologically relevant science across many areas of organismal biology. We aspire to maintain an environment that fosters creativity, diversity, and inclusion as well as engagement with communities in the areas where we work.
We stand in solidarity with the BlackLivesMatter Movement. Scientists and the institutions we work in are complicit in centuries of racism and we will hold ourselves and our institutions accountable by using lab meetings to reflect on our own privileges and by demanding action from Stanford University. We will continue supporting the careers of our Black colleagues by inviting them to seminars, reading their papers, and promoting their work through collaboration and our social media spaces. We are committed to including classrooms in predominantly Black neighborhoods to our Froggers School Program.

Lauren O'Connell

Biology, Neuroscience Institute
Assistant Professor

Biology, Neuroscience Institute


Last Updated: August 10, 2020

We study how genetic and environmental factors contribute to biological diversity and adaptation. We are particularly interested in understanding (1) how behavior evolves through changes in brain function and (2) how animal physiology evolves through repurposing existing cellular components.
Our mission is to perform rigorous, ethical, and ecologically relevant science across many areas of organismal biology. We aspire to maintain an environment that fosters creativity, diversity, and inclusion as well as engagement with communities in the areas where we work.
We stand in solidarity with the BlackLivesMatter Movement. Scientists and the institutions we work in are complicit in centuries of racism and we will hold ourselves and our institutions accountable by using lab meetings to reflect on our own privileges and by demanding action from Stanford University. We will continue supporting the careers of our Black colleagues by inviting them to seminars, reading their papers, and promoting their work through collaboration and our social media spaces. We are committed to including classrooms in predominantly Black neighborhoods to our Froggers School Program.

Lauren Goins

Developmental Biology
Assistant Professor
View in Stanford Profiles

Developmental Biology


Last Updated: March 13, 2024

The Goins Lab aims to understand how cells make decisions. Our research focuses on how young, immature blood stem cells, with the potential to become many different cell types, choose between these cell fates. Our research elucidates how blood stem cells make these fate decisions by studying the fundamental molecular and cellular mechanisms that control the decision-making process during homeostasis and in response to stress. We are interested in how intracellular signaling pathways, asymmetric or symmetric cell division, gene regulation, cell cycle control, and stress response pathways are integrated together to influence cell fate choice. 

Laura Simons

Anesthes, Periop & Pain Med
Professor
View in Stanford Profiles

Anesthes, Periop & Pain Med


Last Updated: August 24, 2023

The primary goal of this laboratory is to promote the health and well being of children and adolescents with chronic pain and their families. In line with this goal, research projects focus on biological, neurological, cognitive, affective, and social risk and resiliency factors of the pain experience. Projects include brain imaging, longitudinal clinical cohort, and treatment intervention studies.

  • Anesthesia Training Grant in Biomedical Research

Laura Schaefer

Earth & Planetary Sciences
Assistant Professor, Earth and Planetary Sciences
View in Stanford Profiles

Earth & Planetary Sciences


Last Updated: August 30, 2023

In the Planetary Modeling Group, we use a variety of modeling techniques to study planets near and far. We focus on the interaction between the interiors and atmospheres of rocky planets both in the Solar System and around other stars. We study the birth and differentiation of planets, the exotic lava worlds of the exoplanet population, but also questions about the environment of the early Earth and other potentially habitable planets and how those planets evolve due to geology, stellar influences, and life.

Laura Attardi

Radiation Oncology, Genetics
Professor
View in Stanford Profiles

Radiation Oncology, Genetics


Last Updated: December 01, 2021

The gene encoding the p53 transcription factor is the most commonly mutated gene in human cancer, yet we lack a complete understanding of how its loss promotes cancer and how to target this pathway therapeutically. My lab studies p53 in the context of two very deadly and common cancer, pancreatic cancer and lung cancer, to understand how p53 loss promotes tumor initiation and progression. We are investigating not only how p53 mutation changes tumor cells themselves but also how these changes in tumor cells alter the cells of the tumor microenvironment to promote cancer development. We strive to understand p53 function using varied approaches, including mass spectrometry, CRISPR screening, ATAC-sequencing, spatial transcriptomics and in vivo mouse analyses. Using these combined approaches, we are gaining key new insights into the fundamental functions of p53 in vivo, which will ultimately inform us on how to target this critical pathway therapeutically.

  • Cancer Etiology, Prevention, Detection and Diagnosis
  • Postdoctoral Training in the Radiation Sciences

Laura Attardi

Radiation Oncology, Genetics
Professor
View in Stanford Profiles

Radiation Oncology, Genetics


Last Updated: December 01, 2021

The gene encoding the p53 transcription factor is the most commonly mutated gene in human cancer, yet we lack a complete understanding of how its loss promotes cancer and how to target this pathway therapeutically. My lab studies p53 in the context of two very deadly and common cancer, pancreatic cancer and lung cancer, to understand how p53 loss promotes tumor initiation and progression. We are investigating not only how p53 mutation changes tumor cells themselves but also how these changes in tumor cells alter the cells of the tumor microenvironment to promote cancer development. We strive to understand p53 function using varied approaches, including mass spectrometry, CRISPR screening, ATAC-sequencing, spatial transcriptomics and in vivo mouse analyses. Using these combined approaches, we are gaining key new insights into the fundamental functions of p53 in vivo, which will ultimately inform us on how to target this critical pathway therapeutically.

  • Cancer Etiology, Prevention, Detection and Diagnosis
  • Postdoctoral Training in the Radiation Sciences

Lars Steinmetz

Genetics
Professor
View in Stanford Profiles

Genetics


Last Updated: November 11, 2021

The Steinmetz group develops experimental approaches to read, edit and write entire genomes across scales. By applying these technologies, members of the lab aim at understanding the genetic basis of complex phenotypes, the mechanisms of transcription, and the molecular systems underpinning disease. One of the most daunting obstacles in biomedicine is the complex nature of most phenotypes (including cancer, diabetes, heart disease and several rare diseases) due to epistatic interactions between multiple genetic variants and environmental influences. Our aim is to transform the way we approach biomedical research, eventually by assigning a function to every nucleotide in the human genome. Along the way, we continually innovate and improve novel genomics technologies, enabling us to achieve our goals faster and more efficiently. For example, we will develop novel tools for precision genome editing, increase the scale and complexity of functional genomics screens, learn how to write genomes with unique traits from scratch, and apply long-read sequencing methods to understand disease mechanisms. Ultimately, we are working towards an era in which we can predict phenotypic traits from genetic and environmental information. Achieving this ambitious goal would have far-reaching implications, from facilitating precision medicine for everyone, and to predicting how natural populations will respond to changing environments.

Kyle Loh

Developmental Biology, Stem Cell Bio Regenerative Med
Assistant Professor
View in Stanford Profiles

Developmental Biology, Stem Cell Bio Regenerative Med


Last Updated: August 18, 2023

How the richly varied cell-types in the human body arise from one embryonic cell is a biological marvel and mystery. We have mapped how human pluripotent stem cells develop into over thirty different human cell-types. This roadmap allowed us to efficiently and rapidly generate human liver, bone, heart and blood vessel progenitors in a Petri dish from pluripotent stem cells. Each of these tissue precursors could regenerate their cognate tissue upon injection into respective mouse models, with relevance to regenerative medicine. In addition to our interests in developmental and stem cell biology, we also harbor an emerging interest in deadly biosafety level 4 viruses, such as Ebola and Nipah viruses.

Kyle Loh

Developmental Biology, Stem Cell Bio Regenerative Med
Assistant Professor
View in Stanford Profiles

Developmental Biology, Stem Cell Bio Regenerative Med


Last Updated: August 18, 2023

How the richly varied cell-types in the human body arise from one embryonic cell is a biological marvel and mystery. We have mapped how human pluripotent stem cells develop into over thirty different human cell-types. This roadmap allowed us to efficiently and rapidly generate human liver, bone, heart and blood vessel progenitors in a Petri dish from pluripotent stem cells. Each of these tissue precursors could regenerate their cognate tissue upon injection into respective mouse models, with relevance to regenerative medicine. In addition to our interests in developmental and stem cell biology, we also harbor an emerging interest in deadly biosafety level 4 viruses, such as Ebola and Nipah viruses.

Pages