Skip to content Skip to navigation

Juan G. Santiago

Stanford Departments and Centers: 
Mechanical Engineering
Person Title: 
Professor

We invent and develop systems which couple fluid flow, chemical reactions, mass transport, heat transfer, and/or electric fields and apply these to chemical and biological assays.  We design, build, and test microfluidic devices that couple electrokinetics with chemical reactions for on-chip analyses of DNA and high-throughput flow systems for cell assays.  We have two funded projects for which we seek a motivated postdoctoral researcher:

1. We are developing a microfluidic device for fully automated detection of the RNA of SARS-CoV-2 RNA (the virus which causes Covid-19) in less than 60 min.  The device will feature electric field control and enhancement of four processes: RNA extraction, reverse transcription, LAMP amplification, and highly specific detection using CRISPR/Cas enzymes.  See a preliminary version of this assay here:  Ramachandran et al., PNAS, 117, 47 (2020).

2. We are conducting a fundamental study of CRISPR/Cas enzymes with the goal of exploring the ultimate sensitivity of CRISPR-based diagnostic systems.  This work includes developing experimentally validated models of enzyme kinetics and detailed models for the signal-to-noise ratio associated with CRISPR diagnostics.  See Ramachandran & Santiago, Analytical Chem., 93, 20 (2021).

Department URL:
https://me.stanford.edu