Chemistry
PRISM mentorsort ascending Research Interests

Grant Rotskoff

Chemistry
Assistant Professor
View in Stanford Profiles

Chemistry

Last Updated: March 16, 2021

Eric Kool

Chemistry
Professor
View in Stanford Profiles

Chemistry

Last Updated: January 29, 2023

The Kool lab uses the tools of chemistry and biology to study the structures, interactions and biological activities of nucleic acids and the enzymes that process them. Molecular design and synthesis play a major role in this work, followed by analysis of structure and function, both in vitro and in living systems. These studies are aimed at gaining a better basic understanding of biology, and applying this knowledge to practical applications in biomedicine.

Recent research interests include the development of chemical tools for mapping RNA structure and interactions in cells, methods for stabilization and conjugation of RNAs, and the development of probes of DNA repair pathways and their connections to cancer.

Radiology
PRISM mentorsort ascending Research Interests

Gozde Durmus

Radiology
Assistant Professor
View in Stanford Profiles

Radiology

Last Updated: August 10, 2020

Our lab's research lies at the interface of biology, engineering, nanotechnology, and medicine. We develop and apply translational micro/nanotechnologies to study cellular heterogeneity and complex biological systems for single cell analysis and precision medicine.  At this unique nexus, we apply key biological principles to design engineering platforms. Our research philosophy is to apply these platforms to fundamentally understand and address the mechanisms of disease (i.e., cancer, infections). 

We, for the first time, have demonstrated magnetic levitation of living cells and its application to detect minute differences in densities at the single-cell level.  We apply this unique tool to perform ultra-sensitive density measurements, magnetic blueprinting, imaging, sorting and profiling of millions of cells and rare biological materials in seconds in real-time at a single-cell resolution.  For instance, magnetic levitation technology can sort rare circulating tumor markers and cells from patient whole blood  without relying on any markers, tags or antibodies, which cut cross multiple disciplines of magnetics, microfluidics and molecular biology.

Our lab's mission is to bridge the gap between biology, engineering and nanotechnology; to develop simple, inexpensive, easy-to-use, yet, broadly applicable platforms that will change the way in which medicine is practiced as well as how patients are monitored, diagnosed and treated for precision medicine. We apply key biological principles to engineering designs.  Interfacing our unique bioengineering platforms with next-generation sequencing technologies, we aim to understand and answer fundamental questions mainly in cancer biology, antibiotic resistance, and regenerative medicine.

Our focus is to develop new tools and technologies to investigate and fundamentally understand disease and wellness. Our research efforts are summarized as follows:

  • Creating new tools and technologies to detect and isolate circulating biological signatures, materials and markers from biological fluids (i.e., circulating tumor cells, circulating tumor emboli, exosomes in blood, urine, and saliva).
  • Enabling investigations of these rare biological materials to “decode” the molecular, genetic and proteomics characteristics to better understand the biology of disease, with a special focus on cancer biology and metastasis.
  • Detecting antibiotic susceptibility using magnetic levitation. 
  • Evolving these technologies into the next generation of applications in antibiotic resistance to eradicate biofilms and resistant microorganisms.
  • Exploring self-assembly of single cells under microgravity conditions for bioprinting, tissue engineering and regenerative medicine. 

We are seeking open and honest, creative, dedicated, and team-oriented individuals to join our research team. Our lab prioritizes inclusion and diversity to achieve excellence in research and to foster an intellectual climate that is welcoming and nurturing. Two positions are available for energetic, self-driven and passionate postdoctoral fellow candidates.  Applicants are expected to be technically competent in a discipline relevant to our mission and vision.  

Pediatrics
PRISM mentorsort ascending Research Interests

Glaivy Batsuli

Pediatrics
Assistant Professor
View in Stanford Profiles

Pediatrics

Last Updated: October 02, 2023

The Batsuli Lab focuses on elucidating mechanisms of the immune response to blood coagulation proteins deficient in patients with inherited bleeding disorders, specifically hemophilia. Hemophilia is a rare bleeding disorders caused by low or absent clotting proteins factor VIII or factor IX that affects an individual's risk of bleeding. Our lab seeks to better understand the interaction of factor proteins with antigen presenting cells that result in antibody development against factor replacement therapies in order to develop therapeutic strategies that evade these immune responses and induce tolerance. The Batsuli Lab supports a collaborative and supportive research environment that engages in team science.

Elizabeth Egan

Pediatrics
Assistant Professor
View in Stanford Profiles

Pediatrics

Last Updated: July 13, 2022

Malaria is one of the leading causes of childhood morbidity and mortality in the world. The etiologic agent of severe malaria, Plasmodium falciparum, exclusively infects red blood cells during the blood stage of its life cycle, when all of the symptoms of malaria occur. P. falciparum is an obligate intracellular parasite, suggesting that it critically depends on host factors for its biology and pathogenesis. This concept is also supported by population genetic studies, which indicate that humans have evolved certain red cell traits, such as hemoglobinopathies, to protect against malaria. The importance of these host-pathogen interactions raises the possibility that critical red cell factors could serve as targets for new, host-directed therapeutics for malaria. However, our understanding of host determinants for malaria is limited because red cells are enucleated and lack DNA, hindering genetic manipulation. In the Egan laboratory we have surmounted this hurdle by adapting advances from stem cell biology to the study of malaria host factors. Specifically, we have developed approaches to differentiate primary human CD34+ hematopoietic stem/progenitor cells down the erythroid lineage to enucleated red blood cells that can be infected by P. falciparum. This thus gives us access to the nucleated progenitor cells for genetic modification using RNAi and CRISPR-Cas9 genome editing. We are using these methods to develop forward genetic screens to identify novel host factors for malaria, as well as to perform mechanistic studies to understand the specific functions of critical host factors during the developmental cycle of malaria parasites. In addition, the lab has projects focused on understanding human adaptation to malaria using clinical samples. Our long term goal is to explore the possibility of host-directed therapeutics for malaria.

  • Molecular Basis of Host Parasite Interaction
  • Training in Pediatric Nonmalignant Hematology and Stem Cell Biology
Genetics
PRISM mentorsort ascending Research Interests

Gavin Sherlock

Genetics
Professor
View in Stanford Profiles

Genetics

Last Updated: February 01, 2023

The Sherlock lab uses experimental approaches to understand the evolutionary process, specifically interested in i) what's the rate of beneficial mutation, ii) what is the distribution of fitness effects of beneficial mutations, iii) what are the identities of beneficial mutations (and are they gain or loss of function, are they recessive, dominant or overdominant, are the genic or regulatory?) and iv) how do each of these change as a function of genotype, ploidy and environment. We are also interested in how mutations that are beneficial in one environment fare in others, to explore the trade-offs that inevitably occur when fitness increases in a specific environment, and we are interested in exploring at what level experimental evolution can be deterministic, and at what level it is stochastic. We typically use short-term continuous (chemostat) and serial batch culture experiments in conjunction with lineage tracking and high throughput sequencing to understand the adaptive changes that occur in yeast in response to selective pressures as they evolve in vitro.

  • Institutional Training Grant in Genome Science
  • Other

Gavin Sherlock

Genetics
Professor
View in Stanford Profiles

Genetics

Last Updated: December 01, 2021

The Sherlock lab uses experimental approaches to understand the evolutionary process, specifically interested in i) the beneficial mutation rate, ii) the distribution of fitness effects (DFE) of beneficial mutations, iii) the identities of beneficial mutations (are they gain or loss of function, are they recessive, dominant or overdominant, are the genic or regulatory?) and iv) how do each of these change as a function of genotype, ploidy and environment. We are also interested in how mutations that are beneficial in one environment fare in others (pleiotropy), and we are interested in exploring at what level experimental evolution can be deterministic, and at what level it is stochastic. We typically use serial batch culture experiments in conjunction with lineage tracking and high throughput sequencing to understand the adaptive changes that occur in yeast in response to selective pressures as they evolve in vitro. Department URL: https://med.stanford.edu/genetics.html

  • Institutional Training Grant in Genome Science

Felix Horns

Genetics
Assistant Professor of Genetics, Core Investigator

Genetics

Last Updated: September 14, 2024

The Horns Lab creates and uses new technologies to understand and manipulate cells. We aim to discover the fundamental principles governing how cells and tissues operate, and to harness these insights to improve human health. Our work unites molecular engineering, synthetic biology, and genomics to answer questions and solve problems in immunology, neuroscience, cancer, and aging.

Anesthes, Periop & Pain Med
PRISM mentorsort ascending Research Interests

Gary Peltz

Anesthes, Periop & Pain Med
Professor
View in Stanford Profiles

Anesthes, Periop & Pain Med

Last Updated: August 15, 2023

Our laboratory develops and applies state of the art genetic, genomic and stem cell technologies to its research programs. These methodologies are used to discover the mechanisms mediating disease susceptibility and drug response, and to develop new therapies. As one example, we developed a novel computational genetic analysis method, which has identified genetic factors affecting disease susceptibility and biomedical responses in mouse models. Over 25 genetic factors affecting susceptibility to drug addiction, chronic pain, infectious diseases, and others have already been identified. We recently developed a novel AI for mosue genetic discovery and have received two NIH grants for advancing AI-based genetic discovery. 

  • Anesthesia Training Grant in Biomedical Research

Eric Gross

Anesthes, Periop & Pain Med
Assistant Professor
View in Stanford Profiles

Anesthes, Periop & Pain Med

Last Updated: August 11, 2020

Our laboratory is developing tools to study genetic variants commonly found in Asians within the basic science laboratory including CRISPR mouse models, drug development/design, and protein chemistry. Most of our laboratory uses basic science techniques to study the cardiovascular system and we are funded through the NIH from NIGMS and NHLBI. Our NIGMS funded project focuses on genetic variants in Asians and developing precision medicine strategies for reducing perioperative organ injury and precision medicine strategies for delivering anesthesia and pain relievers such as opioids. Our NHLBI funded project is to study the cardiopulmonary effects of e-cigarettes in rodents and to further determine how a common genetic variant in East Asians may impact the cellular toxicity of e-cigarettes.

  • Anesthesia Training Grant in Biomedical Research
Chemical and Systems Biology
PRISM mentorsort ascending Research Interests

Gary Peltz

Chemical and Systems Biology
Professor
View in Stanford Profiles

Chemical and Systems Biology

Last Updated: January 12, 2022

The Peltz laboratory develops and uses state of the art genetic, genomic and stem cell technologies in its research programs. These methodologies are used to discover the mechanisms mediating disease susceptibility and drug response, and to develop new therapies. As one example, we developed a novel computational genetic analysis method, which has identified genetic factors affecting disease susceptibility and biomedical responses in mouse models. One of the genetic findings is the basis for an ongoing clinical trial that tests a new therapy for preventing opiate withdrawal from occuring in babies born to mothers that take opiates. Over 25 genetic factors affecting susceptibility to drug addiction, chronic pain, infectious diseases, and others have been identified. An ongoing effort is now analyzing 10000 biomedical responses in panels of inbred mouse strains. Single-cell RNA sequencing and metabolic analysis are used to identify developmental and disease-causing pathways. Stem cell-based methods for liver engineering are also used. As examples of this, the Peltz lab has produced mice with humanized livers that are used to improve drug safety; developed methods to engineer human liver from adipocyte stem cells; and to produce human liver organoids from stem cells, which are used for studying the pathogenesis of human genetic liver diseases.

  • Anesthesia Training Grant in Biomedical Research
Biochemistry
PRISM mentorsort ascending Research Interests

Flora Novotny Rutaganira

Biochemistry
Assistant Professor
View in Stanford Profiles

Biochemistry

Last Updated: August 15, 2023

The FUNR Lab, lead by Flora Rutaganira uses choanoflagellates—the closest living single-celled relatives to animals—to study the origin of animal cell communication. We apply chemical, genetic, and cell biological tools to probe choanoflagellate cell-cell communication. We hope that our research has implications for understanding not only animal cell signaling, but also the origin of multicellularity in animals.

Ellen Yeh

Biochemistry
Associate Professor
View in Stanford Profiles

Biochemistry

Last Updated: July 14, 2022

The Yeh Lab studies the apicoplast, a unique plastid organelle in Plasmodium falciparum parasites that cause malaria. We are particularly focused on unbiased chemical and genetic screens to discover new cell biology and therapeutic targets for this important global health disease. Our work highlights the untapped opportunities in exploring divergent biology in non-model organisms, a theme we plan to expand in the lab by studying ocean algae (malaria's cousins!) and their role in the global ecosystem.

  • Molecular Basis of Host Parasite Interaction
Developmental Biology
PRISM mentorsort ascending Research Interests

Flora Novotny Rutaganira

Developmental Biology
Assistant Professor
View in Stanford Profiles

Developmental Biology

Last Updated: August 15, 2023

The FUNR Lab, lead by Flora Rutaganira uses choanoflagellates—the closest living single-celled relatives to animals—to study the origin of animal cell communication. We apply chemical, genetic, and cell biological tools to probe choanoflagellate cell-cell communication. We hope that our research has implications for understanding not only animal cell signaling, but also the origin of multicellularity in animals.

David Kingsley

Developmental Biology
Professor
View in Stanford Profiles

Developmental Biology

Last Updated: December 01, 2022

Although the genomes of many organisms have now been sequenced, we still know relatively little about the specific DNA sequence changes that underlie important traits and diseases. My laboratory has developed an innovative combination of genetic and genomic approaches to identify the detailed molecular mechanisms that control key vertebrate traits. We use genetic crosses in mice, stickleback fish, and pluripotent stem cells to identify key chromosome regions controlling phenotypic traits. We use comparative genomics and  gene expression analysis in different populations, species, and hybrids to identify particular genomic changes with these key regions.  And we use transgenic and genome editing approaches to test the phenotypic effect of specific genomic changes, thus providing a direct functional link  between DNA sequence changes and classic phenotypes.  By combining genetics and genomics we have been able to identify the detailed molecular basis of major changes in skeletal structures, limb development, pigmentation, and neural functions across a range of populations and species.  We are currently extending these approaches to genetic and genomic mapping of human traits and diseases using experiments with chimp and human stem cells.    We are still a long way from knowing the genomic mechanisms that have made us human. However, we believe that molecular mechanisms contributing to human  traits can now be studied, and that progress in this area will lead to important new insights into both human health and human disease.

Med: Cardiovascular Medicine
PRISM mentorsort ascending Research Interests

Fatima Rodriguez

Med: Cardiovascular Medicine
Assistant Professor
View in Stanford Profiles

Med: Cardiovascular Medicine

Last Updated: November 01, 2022

The Health Equity Advancement through Research and Technology (HEART) Lab, led by Dr. Fatima Rodriguez, aims to develop innovative approaches to understanding and eliminating cardiovascular disease health disparities across diverse and understudied populations. Prior and current projects seek to identify the source of inequities in cardiovascular disease by race, ethnicity, language, sex, age, and more. We have documented extensive barriers to guideline adherence to cardiovascular prevention recommendations and how these result in adverse clinical outcomes. Several projects also center around Hispanic cardiovascular health and prevention. We have published work highlighting the importance of disaggregation of Hispanic individuals by background, acculturation, and socioeconomic factors. We are also interested in using novel AI/machine learning approaches in the electronic health record to improve cardiovascular risk prediction and treatment for understudied populations, including historically marginalized racial/ethnic patient groups and older adults. Other areas of focus include promoting digital health equity by studying telemedicine access and utilization, especially after the expansion of virtual care following the COVID-19 pandemic. Our research also explores reasons and solutions to increase workforce diversity in cardiovascular medicine and representation of diverse groups in guideline-informing clinical trials.

Radiation Oncology
PRISM mentorsort ascending Research Interests

Everett Moding

Radiation Oncology
Assistant Professor
View in Stanford Profiles

Radiation Oncology

Last Updated: March 14, 2022

We perform translational cancer research by analyzing human tissue and blood samples with next-generation sequencing to understand the genetic underpinnings and expression signatures that determine treatment response and resistance. We use genetically engineered mouse models to validate our findings, perform mechanistic experiments, and test new therapies. Our ultimate goal is to translate our findings to the clinic to improve outcomes for patients with cancer.

Med: Bone Marrow Transplant
PRISM mentorsort ascending Research Interests

Everett Meyer

Med: Bone Marrow Transplant
Assistant Professor
View in Stanford Profiles

Med: Bone Marrow Transplant

Last Updated: August 13, 2020
Stanford Cancer Center
PRISM mentorsort ascending Research Interests

Everett Meyer

Stanford Cancer Center
Assistant Professor
View in Stanford Profiles

Stanford Cancer Center

Last Updated: August 13, 2020
Pathology
PRISM mentorsort ascending Research Interests

Eugene Butcher

Pathology
Professor
View in Stanford Profiles

Pathology

Last Updated: July 13, 2022

We are interested in fundamental aspects of cell-cell recognition, migration and development with the mammalian immune and vascular systems as  models. We use molecular, genetic and single cell transcriptomic and mass cytometric approaches to study  the development and trafficking of  lymphocytes, NK cells and dendritic cells and their role in immune function in health and diseases.    The vascular endothelium controls immune cell recruitment from the blood,  and thus determines the nature and magnitude of immune and inflammatory responses.     In a major new effort, we are applying single cell approaches (scRNAseq and mass cytometry), and novel computational approaches to probe endothelial cell specialization and responses in models of immune and tumor angiogenesis and inflammation.     Although our focus is on fundamental problems in biology, the work is intrinsically translational and the laboratory is interested in applying its  discoveries to models of infection and immune pathology: examples include genetic studies of GPCR's and assessment of novel therapeutics in models of inflammatory bowel disease, psoriasis, cancer, aging and infection.   We are actively recruiting fellows with experience in biocomputation and coding who can take advantage of the datasets we are generating;   or experience in vascular biology, immunology,  imaging and cytometry.

Ellen Yeh

Pathology
Associate Professor
View in Stanford Profiles

Pathology

Last Updated: July 14, 2022

The Yeh Lab studies the apicoplast, a unique plastid organelle in Plasmodium falciparum parasites that cause malaria. We are particularly focused on unbiased chemical and genetic screens to discover new cell biology and therapeutic targets for this important global health disease. Our work highlights the untapped opportunities in exploring divergent biology in non-model organisms, a theme we plan to expand in the lab by studying ocean algae (malaria's cousins!) and their role in the global ecosystem.

  • Molecular Basis of Host Parasite Interaction

Ellen Yeh

Pathology
Associate Professor

Pathology

Last Updated: July 12, 2022

Environmental microbiology (e.g. diatoms, algae) and synthetic biology

Topics: Nitrogen fixation, lipid biosynthesis and transprot, cellular endosymbiosis, nonmodel organisms

Application areas: Fertilizers, Biofuels

Dylan Dodd

Pathology
Assistant Professor
View in Stanford Profiles

Pathology

Last Updated: January 12, 2022

One of the key ways that the gut microbiome impacts human health is through the production of bioactive metabolites. By understanding how microbes produce these molecules, we aim to develop new approaches to promote human health and treat disease. Our laboratory employs bacterial genetics, metabolomics, and gnotobiotic mouse colonization to uncover the chemistry that underlies host-microbe interactions in the gut.

Biology
PRISM mentorsort ascending Research Interests

Erin Mordecai

Biology
Associate Professor
View in Stanford Profiles

Biology

Last Updated: January 12, 2022

Our research investigates how environmental changes like climate and land use change are affecting infectious diseases in humans and wildlife. We use tools from disease ecology, including mathematical and statistical models, health surveillance data, remotely sensed data, laboratory experiments, and field surveys to better understand the mechanisms by which changes in temperature and habitat affect vectors and disease transmission. 

Dominique Bergmann

Biology
Professor
View in Stanford Profiles

Biology

Last Updated: February 23, 2024

Our lab is interested in how stem cell-like populations are created and maintained in developing, environmental responsive tissues.  We primarily use the Arabidopsis stomatal lineage for these studies because this epidermal cell lineage distills features common to all tissue development: stomatal precursor cells are chosen from an initially equivalent field, they undergo asymmetric and self-renewing divisions, they communicate among themselves to establish pattern and they terminally differentiate into stable, physiologically important cell-types.  In the past decade, we have developed the stomatal lineage into a conceptual and technical framework for the study of cell fate, stem-cell self-renewal and cell polarity. Currently, we are especially interested in: (1) using single-cell technologies to capture transcriptomic and chromatin state information about cells as they transit through various identities (stem cell-like, committed, differentiated, and reprogrammed); (2) using new ‘in vivo biochemical’ approaches to identify transcription factor modules in the nuclear and cell polarity complexes at the plasma membrane, and to determine how these complexes guide changes in cell shape, size and fate; (3) computational modeling of pattern formation in the epidermis, and (4) testing how environmental information impacts developmental choices and robustness.

Dominique Bergmann

Biology
Professor
View in Stanford Profiles

Biology

Last Updated: February 23, 2024

The overall goal of my research program is to understand how stem cell-like populations are created and maintained in the context of an intact and environmental responsive tissue.  We use the Arabidopsis stomatal lineage for these studies as this epidermal cell lineage distills many of the features common to all tissue development: stomatal precursor cells are chosen from an initially equivalent field, they undergo asymmetric and self-renewing divisions, they communicate among themselves to establish pattern and they terminally differentiate into stable, physiologically important cell-types.  In the past decade, we have developed the stomatal lineage into a conceptual and technical framework for the study of cell fate, stem-cell self-renewal and cell polarity. Currently, we are especially interested in: (1) using new single-cell technologies to capture transcriptomic and chromatin state information about cells as they transit through various identities (stem cell-like, committed, differentiated, and reprogrammed); (2) using new ‘in vivo biochemical’ approaches to identify plant-specific cell polarity complexes and how these guide changes in cell shape, size and fate; (3) computational modeling of pattern formation in the epidermis, and (4) testing how environmental information impacts developmental choices and robustness.

Woods Institute
PRISM mentorsort ascending Research Interests

Erin Mordecai

Woods Institute
Associate Professor
View in Stanford Profiles

Woods Institute

Last Updated: January 12, 2022

Our research investigates how environmental changes like climate and land use change are affecting infectious diseases in humans and wildlife. We use tools from disease ecology, including mathematical and statistical models, health surveillance data, remotely sensed data, laboratory experiments, and field surveys to better understand the mechanisms by which changes in temperature and habitat affect vectors and disease transmission. 

Electrical Engineering
PRISM mentorsort ascending Research Interests

Eric Pop

Electrical Engineering
Professor
View in Stanford Profiles

Electrical Engineering

Last Updated: January 27, 2023

The Pop Lab is a research group led by Prof. Eric Pop in Electrical Engineering (EE) and Materials Science & Engineering (MSE) at Stanford University. We are located in the Paul Allen Center for Integrated Systems (CIS), working in the Stanford Nanofabrication Facility (SNF) and the Stanford Nano Shared Facilities (SNSF). We are affiliated with the Stanford SystemX Alliance and the Non-Volatile Memory Technology Research Initiative (NMTRI).

Our research is at the intersection of nanoelectronics and nanoscale energy conversion, exploring topics such as:

  • Energy-efficient transistors, data storage (memory), and thermoelectrics
  • 2D materials (graphene, h-BN, MoS2, WSe2,...) and phase-change materials (GST, VO2)
  • Fundamental physical limits of current and heat flow, e.g. ballistic electrons and phonons
  • Applications of nanoscale energy transport, conversion and harvesting

Our work includes nanofabrication, characterization, and multiscale simulations. On-campus collaborations include Materials Science, Physics, Chemical and Mechanical Engineering, and off-campus they range from UIUC, UC Davis, Georgia Tech, UT Dallas, Univ. of Tokyo and Singapore (NUS), to TU Wien, Univ. Bologna and Poli Milano.

To learn more about us, please visit http://poplab.stanford.edu

Materials Sci & Engineering
PRISM mentorsort ascending Research Interests

Eric Pop

Materials Sci & Engineering
Professor
View in Stanford Profiles

Materials Sci & Engineering

Last Updated: January 27, 2023

The Pop Lab is a research group led by Prof. Eric Pop in Electrical Engineering (EE) and Materials Science & Engineering (MSE) at Stanford University. We are located in the Paul Allen Center for Integrated Systems (CIS), working in the Stanford Nanofabrication Facility (SNF) and the Stanford Nano Shared Facilities (SNSF). We are affiliated with the Stanford SystemX Alliance and the Non-Volatile Memory Technology Research Initiative (NMTRI).

Our research is at the intersection of nanoelectronics and nanoscale energy conversion, exploring topics such as:

  • Energy-efficient transistors, data storage (memory), and thermoelectrics
  • 2D materials (graphene, h-BN, MoS2, WSe2,...) and phase-change materials (GST, VO2)
  • Fundamental physical limits of current and heat flow, e.g. ballistic electrons and phonons
  • Applications of nanoscale energy transport, conversion and harvesting

Our work includes nanofabrication, characterization, and multiscale simulations. On-campus collaborations include Materials Science, Physics, Chemical and Mechanical Engineering, and off-campus they range from UIUC, UC Davis, Georgia Tech, UT Dallas, Univ. of Tokyo and Singapore (NUS), to TU Wien, Univ. Bologna and Poli Milano.

To learn more about us, please visit http://poplab.stanford.edu

Eric Appel

Materials Sci & Engineering
Assistant Professor
View in Stanford Profiles

Materials Sci & Engineering

Last Updated: July 13, 2022

We are an interdisciplinary team focusing on generating new biomaterials to tackle healthcare challenges of critical importance to society. We are using these new biomaterials as sustained delivery technologies that can act as tools to better understand fundamental biological processes and to engineer next-generation healthcare solutions.

  • Diabetes, Endocrinology and Metabolism
Mechanical Engineering
PRISM mentorsort ascending Research Interests

Eric Darve

Mechanical Engineering
Professor
View in Stanford Profiles

Mechanical Engineering

Last Updated: August 15, 2023
Institute for Computational and Mathematical Engineering
PRISM mentorsort ascending Research Interests

Eric Darve

Institute for Computational and Mathematical Engineering
Professor
View in Stanford Profiles

Institute for Computational and Mathematical Engineering

Last Updated: August 15, 2023
Ped: Endocrinology
PRISM mentorsort ascending Research Interests

Eric Appel

Ped: Endocrinology
Assistant Professor
View in Stanford Profiles

Ped: Endocrinology

Last Updated: July 13, 2022

We are an interdisciplinary team focusing on generating new biomaterials to tackle healthcare challenges of critical importance to society. We are using these new biomaterials as sustained delivery technologies that can act as tools to better understand fundamental biological processes and to engineer next-generation healthcare solutions.

  • Diabetes, Endocrinology and Metabolism
Earth Energy Env Sciences
PRISM mentorsort ascending Research Interests

Elliott White Jr.

Earth Energy Env Sciences
Assistant Professor
View in Stanford Profiles

Earth Energy Env Sciences

Last Updated: January 26, 2022

The coastal margin is a complex socio-ecological landscape that is experiencing more frequent and stronger hazards from the coasts due to global climate change. Saltwater intrusion and Sea level rise (SWISLR) are placing coastal ecosystems under increasing threat, while humans in the coastal margin are pressured to make critical decisions regarding livelihood and well-being. Assessing, predicting, and mitigating the myriad challenges to the coastal margin requires a holistic approach that can integrate knowledge from different disciplines and work at multiple scales.

David Lobell

Earth Energy Env Sciences
Professor

Earth Energy Env Sciences

Last Updated: August 10, 2020

Food security; Agriculture; Data science; Remote Sensing

Microbiology and Immunology
PRISM mentorsort ascending Research Interests

Ellen Yeh

Microbiology and Immunology
Associate Professor
View in Stanford Profiles

Microbiology and Immunology

Last Updated: July 14, 2022

The Yeh Lab studies the apicoplast, a unique plastid organelle in Plasmodium falciparum parasites that cause malaria. We are particularly focused on unbiased chemical and genetic screens to discover new cell biology and therapeutic targets for this important global health disease. Our work highlights the untapped opportunities in exploring divergent biology in non-model organisms, a theme we plan to expand in the lab by studying ocean algae (malaria's cousins!) and their role in the global ecosystem.

  • Molecular Basis of Host Parasite Interaction

Ellen Yeh

Microbiology and Immunology
Associate Professor

Microbiology and Immunology

Last Updated: July 12, 2022

Environmental microbiology (e.g. diatoms, algae) and synthetic biology

Topics: Nitrogen fixation, lipid biosynthesis and transprot, cellular endosymbiosis, nonmodel organisms

Application areas: Fertilizers, Biofuels

Elizabeth Egan

Microbiology and Immunology
Assistant Professor
View in Stanford Profiles

Microbiology and Immunology

Last Updated: July 13, 2022

Malaria is one of the leading causes of childhood morbidity and mortality in the world. The etiologic agent of severe malaria, Plasmodium falciparum, exclusively infects red blood cells during the blood stage of its life cycle, when all of the symptoms of malaria occur. P. falciparum is an obligate intracellular parasite, suggesting that it critically depends on host factors for its biology and pathogenesis. This concept is also supported by population genetic studies, which indicate that humans have evolved certain red cell traits, such as hemoglobinopathies, to protect against malaria. The importance of these host-pathogen interactions raises the possibility that critical red cell factors could serve as targets for new, host-directed therapeutics for malaria. However, our understanding of host determinants for malaria is limited because red cells are enucleated and lack DNA, hindering genetic manipulation. In the Egan laboratory we have surmounted this hurdle by adapting advances from stem cell biology to the study of malaria host factors. Specifically, we have developed approaches to differentiate primary human CD34+ hematopoietic stem/progenitor cells down the erythroid lineage to enucleated red blood cells that can be infected by P. falciparum. This thus gives us access to the nucleated progenitor cells for genetic modification using RNAi and CRISPR-Cas9 genome editing. We are using these methods to develop forward genetic screens to identify novel host factors for malaria, as well as to perform mechanistic studies to understand the specific functions of critical host factors during the developmental cycle of malaria parasites. In addition, the lab has projects focused on understanding human adaptation to malaria using clinical samples. Our long term goal is to explore the possibility of host-directed therapeutics for malaria.

  • Molecular Basis of Host Parasite Interaction
  • Training in Pediatric Nonmalignant Hematology and Stem Cell Biology

Dylan Dodd

Microbiology and Immunology
Assistant Professor
View in Stanford Profiles

Microbiology and Immunology

Last Updated: January 12, 2022

One of the key ways that the gut microbiome impacts human health is through the production of bioactive metabolites. By understanding how microbes produce these molecules, we aim to develop new approaches to promote human health and treat disease. Our laboratory employs bacterial genetics, metabolomics, and gnotobiotic mouse colonization to uncover the chemistry that underlies host-microbe interactions in the gut.

denise monack

Microbiology and Immunology
Professor
View in Stanford Profiles

Microbiology and Immunology

Last Updated: January 27, 2023

We study how the interactions between enteric bacterial pathogens, the gut microbiota and the immune system influence chronic infection and transmission to new hosts. Salmonella is one of the model pathogens that we study. Salmonella typhi cause systemic diseases such as typhoid fever. we also explore interactions between Salmonella and immune cells, such as macrophages. We have shown that persisting Salmonella exploit the metabolic immune state of alternatively activated macrophages in order to cause chronic infections.

We are very interested in human-adapted Salmonella and are trying to understand the evolution of the strains of Salmonella that cause typhoid fever. Recently we have developed a tool to study the genomes of various Salmonella and how the genes contribute to surviving the various stresses that the pathogens encounter during infection, including human macrophages.

  • Molecular Basis of Host Parasite Interaction

David Schneider

Microbiology and Immunology
Professor, Chair, Advising Dean for Biosciences Graduate Students and Posdtoctoral Fellows
View in Stanford Profiles

Microbiology and Immunology

Last Updated: March 12, 2021

My group is intersted in preventing sickness following infections.  We do this not by limiting microbe load, but by increasing the body's tolerance and resilience to damage.  In the past we worked mostly on fruitflies, but have switched to studying mice and humans and focusing on malaria.  We try to identify modifiable physiological systems that we can perturb to improve health outcomes.  

  • Other
Chemical Engineering
PRISM mentorsort ascending Research Interests

Elizabeth Sattely

Chemical Engineering
Associate Professor
View in Stanford Profiles

Chemical Engineering

Last Updated: July 13, 2022

My laboratory is focused broadly on plant chemistry and is deeply invested in pathway discovery. Despite the important roles of plant natural products in plant and human health, very few complete plant biosynthetic pathways are known. This lack of knowledge limits our understanding of natural product mode of action in plants and prevents access to engineered pathways. New plant genome sequences and synthetic biology tools have enabled three research areas in my lab: 1) methods for accelerating pathway discovery in plants (especially for clinically used therapeutics), and 2) discovering new molecules from plants that are important for plant fitness, and 3) using metabolic engineering in plants as a tool to systematically and quantitatively determine the impact of plant molecules on human and plant health and ultimately optimize plant fitness and crop nutrient load. I am looking for postdocs who are interested in joining an interdisciplinary team of scientists and engineers to discover how plant natural products are made and their mode of action, and develop new tools for engineering biosynthetic pathways. Our vision is to use engineered biosynthesis to reveal mechanisms by which natural products from plants contribute to plant fitness and human health.

Neurology & Neurological Sci
PRISM mentorsort ascending Research Interests

Elizabeth Mormino

Neurology & Neurological Sci
Assistant Professor
View in Stanford Profiles

Neurology & Neurological Sci

Last Updated: February 23, 2024

Alzheimer's disease pathology begins decades before clinical symptoms of dementia are present, providing an important opportunity to understand early disease and the impact of this disease on cognitive aging.  We combine multimodal neuroimaging and genetics to determine how AD changes and risk factors influence subtle cognitive decline in older individuals. We have a particular focus on PET imaging of Amyloid and Tau proteins, but also work with structural and functional MRI data. The ultimate goals of our work are to improve our ability to predict who is most at risk for dementia, and to understand the time course of brain changes that occur decades before clinical symptoms are present.  We are specifically recruiting trainees with expertise in genetics, neuroimaging, or neuropsychology, to work on large scale multimodal imaging-genetic studies.

Dermatology
PRISM mentorsort ascending Research Interests

Eleni Linos

Dermatology
Professor
View in Stanford Profiles

Dermatology

Last Updated: February 23, 2024

Our team’s research spans the fields of dermatology, technology and public health. One of our main projects is centered on developing innovative skin cancer prevention interventions using social media. Another project area is the use of shared decision-making, mobile app technology for monitoring and optimal care of low risk skin cancers. We collaborate closely with colleagues in bioinformatics and computer science on use of visual Artificial intelligence methods to skin image monitoring. Additionally, we advocate for diversity and gender equity in medicine by writing both original data articles and perspective pieces on these topics. We collaborate with epidemiologists, clinicians, biostatisticians, basic, computer and social scientists at Stanford University as well as other institutions.

  • Clinical Epidemiology of Infectious Diseases
Epidemiology and Population Health
PRISM mentorsort ascending Research Interests

Eleni Linos

Epidemiology and Population Health
Professor
View in Stanford Profiles

Epidemiology and Population Health

Last Updated: February 23, 2024

Our team’s research spans the fields of dermatology, technology and public health. One of our main projects is centered on developing innovative skin cancer prevention interventions using social media. Another project area is the use of shared decision-making, mobile app technology for monitoring and optimal care of low risk skin cancers. We collaborate closely with colleagues in bioinformatics and computer science on use of visual Artificial intelligence methods to skin image monitoring. Additionally, we advocate for diversity and gender equity in medicine by writing both original data articles and perspective pieces on these topics. We collaborate with epidemiologists, clinicians, biostatisticians, basic, computer and social scientists at Stanford University as well as other institutions.

  • Clinical Epidemiology of Infectious Diseases
Surg: General Surgery
PRISM mentorsort ascending Research Interests

Electron Kebebew

Surg: General Surgery
Professor
View in Stanford Profiles

Surg: General Surgery

Last Updated: February 23, 2024

The Endocrine Oncology Research Laboratory is engaged in cutting-edge endocrine and neuroendocrine clinical, translational and basic research. Our research is focused on:

  • Identifying the molecular basis of endocrine cancers that could impact patient care.
  • Creating new and improved methods, strategies, technologies, and algorithms for the diagnosis of endocrine neoplasms.
  • Defining genetic testing criteria, and optimal screening and surveillance strategies for inherited endocrine and neuroendocrine syndromes.
  • Discovering new molecular, genetic, proteomic, and metabolomic markers for developing better diagnosis and novel targets for treatment of metastatic and advance endocrine and neuroendocrine cancers or biomarkers which could predict prognosis/response to surgical therapy.
  • Advanced imaging and genetics that will allow for precision endocrine surgery.
Geophysics
PRISM mentorsort ascending Research Interests

Dustin Schroeder

Geophysics
Assistant Professor
View in Stanford Profiles

Geophysics

Last Updated: October 21, 2021
Med: Oncology
PRISM mentorsort ascending Research Interests

Dean Felsher

Med: Oncology
Professor
View in Stanford Profiles

Med: Oncology

Last Updated: January 12, 2022

I am a Professor of Medicine-Oncology and Pathology and the Director of TRAM, ARTS and CTNT Programs.

My laboratory studies how oncogenes such as MYC initiate and maintain cancer.  In partic ular we have shown that shutting down oncogenes even for a brief time can revese cancer or elicit "Oncogene Addiction"  For a recent review of our work please see:

The MYC oncogene - the grand orchestrator of cancer growth and immune evasion Nature Reviews Clinical Oncology, 2022

Members of my laboratory are studying basic mechanisms of Oncogene Addiction, the role of Self-renewal/Stemness, Metabolism, Host Immune System, Protein  Biogenesis, Microbiome, Extracellular Vesicles.  

We are developing novel therapuetics using small molecules, nanoparticles, proteins/peptides that can be used to target oncogenes and/or restore the immune response against cancer.

We are developing new diagnostic and imaging agents using PET, Mass Spec, Nanoproteomics, MIcrofluidics.

For recent examples of our work please see: Casey et al, Science, 2016; Gouw et al, Cell Metabolism, 2019; Dhanasekaran et al eLife, 2020; Swaminathan et al, Nat Comm 2020.

 

  • Cancer-Translational Nanotechnology Training Program (Cancer-TNT)
  • Molecular and Cellular Immunobiology
  • Stanford Cancer Imaging Training (SCIT) Program
  • Stanford Molecular Imaging Scholars (SMIS)
  • Training in Pediatric Nonmalignant Hematology and Stem Cell Biology
Med: Infectious Diseases
PRISM mentorsort ascending Research Interests

David Relman

Med: Infectious Diseases
Professor
View in Stanford Profiles

Med: Infectious Diseases

Last Updated: July 14, 2022

The primary research focus of the Relman Lab is the human indigenous microbiota (microbiome), and in particular, the nature and mechanisms of variation in patterns of microbial diversity within the human body as a function of time (microbial succession), space (biogeography within the host landscape), and in response to perturbation, e.g., antibiotics (community robustness and resilience). One of the goals of this work is to define the role of the human microbiome in health and disease. We are particularly interested in measuring and understanding resilience in the human microbial ecosystem. Our work includes the human oral cavity, gut, and female reproductive tract, as well as an analysis of microbial diversity in marine mammals. This research integrates theory and methods from ecology, population biology, environmental microbiology, genomics and clinical medicine.

  • Applied Genomics in Infectious Diseases
Center for Biomedical Ethics
PRISM mentorsort ascending Research Interests

David Magnus

Center for Biomedical Ethics
Director, Professor
View in Stanford Profiles

Center for Biomedical Ethics

Last Updated: November 11, 2021

The Stanford Center for Biomedical Ethics (SCBE) is an interdisciplinary hub for faculty who do research, teaching, and service on topics in bioethics and medical humanities. SCBE researchers have pioneered new approaches to studying the ethical issues presented by new technologies in biomedicine, including Artificial Intelligence, CRISPR and Gene Therapy, Stem Cell Research, Synthetic Biology, and the Human Brain Initiative. To benefit patients, SCBE has undertaken novel, ground-breaking research to improve clinical care, including end of life care, communication between patients and physicians, care for disabled patients, and organ transplantation processes. SCBE offers postdoctoral fellowships in Ethical, Legal, and Social Implications (ELSI) Research and Clinical Ethics. We currently have an opening for a postdoctoral fellow in Clinical Ethics. View more information here. 

Pages