PRISM mentor | Research Interests |
---|---|
Sushma Reddy Cardiovascular Institute
Cardiovascular Institute Last Updated: September 05, 2023 |
My laboratory's overall goal is to (i) understand the mechanisms of right heart failure in children and adults with congenital heart disease and (ii) to develop biomarkers as a plasma signature of myocardial events to better understand the mechanisms of heart failure, improve monitoring of disease progression, early detection of heart failure and risk-stratification. We have focused on tetralogy of Fallot population and single ventricle heart disease. As the survival continues to improve, so also has the incidence of heart failure. However, the underlying cellular mechanisms of heart failure are poorly understood as a result of which no targeted therapy is available. Since it is not possible to obtain heart muscle biopsies routinely on patients, we have taken a novel strategy of using Multi-Omics to better understand disease mechanisms and to follow patients over time comparing their Omics signature to themselves thereby personalizing their care. The goal is to create a targeted biomarker panel for clinical utility to be used in conjunction with imaging data to improve overall prediction of risk. Based on our work to date, we are also interested in understanding myocardial mitochondrial and vascular dysfunction as these have the potential to serve as novel therapeutic targets. Lab website is in creation. Link will be updated when it is ready.
|
Thomas Robinson Cardiovascular Institute
Cardiovascular Institute Last Updated: January 27, 2023 |
Stanford Solutions Science Lab. The Stanford Solutions Science Lab designs solutions to improve health and well-being of children, families, and the planet. Dr. Robinson originated the solution-oriented research paradigm. He is known for his pioneering obesity prevention and treatment research, including the concept of stealth interventions. His research applies social cognitive models of behavior change to behavioral, social, environmental and policy interventions for children and families in real world settings, making the results relevant for informing clinical and public health practice and policy. His research is largely experimental, conducting rigorous school-, family- and community-based randomized controlled trials. He studies obesity and disordered eating, nutrition, physical activity/inactivity and sedentary behavior, the effects of television and other screen time, adolescent smoking, aggressive behavior, consumerism, and behaviors to promote environmental sustainability. Rich longitudinal datasets of physical, physiological, psychological, behavioral, social, behavioral, and multi-omics measures are available from our many community-based obesity prevention and treatment trials in low-income and racial/ethnic minority populations of children and adolescents and their parents. Stanford Screenomics Lab - Human Screenome Project. People increasingly live their lives through smartphones. Our Stanford Screenomics app captures everything that people see and do on their smartphone screens – a record of digital life – by taking a screenshot every 5 seconds. The resulting sequence of screenshots, make up an individual’s screenome, an unique and dynamic sequence of exposures, thoughts, feelings, and actions. To date, we have collected more than 350 million screenshots from 6-12 months of phone use from national samples of about 500 hundred adults and adolescents and their parents. Opportunities available to study the screenome to understand digital media use and its impacts on health and behavior, develop novel diagnostics and prognostics from the screenome, and deliver precision interventions to improve health and well being. An opportunity to help build this paradigm-disrupting new science. |
PRISM mentor | Research Interests |
---|---|
Suzan Carmichael Pediatrics
Pediatrics Last Updated: July 13, 2022 |
Dr. Carmichael is a perinatal and nutritional epidemiologist and Professor of Pediatrics and Obstetrics and Gynecology at the Stanford University School of Medicine. Her research focuses on finding ways to improve maternal and infant health. Exposure themes include nutrition, social context, care, environmental contaminants and genetics. Outcome themes include severe maternal morbidity, stillbirth, birth defects, and preterm delivery. She is particularly interested in understanding the intersectionality of these varied types of exposures and outcomes and how they interact to impact health and health disparities, for the mother-baby dyad, in domestic as well as global health settings. She currently (mid 2020) has an opening in her lab for a post-doc focused on maternal health. |
SUZAN CARMICHAEL Pediatrics
Pediatrics Last Updated: January 29, 2023 |
Our team is committed to finding ways to improve maternal and infant health outcomes and equity by leading research that identifies effective leverage points for change, from upstream 'macro' social and structural factors, to downstream 'micro' clinical factors through a collaborative research approach that integrates epidemiologic approaches with community engagement and systems thinking. Disparities are prominent in maternal and infant health, so a lot of our work is centered on equity. Focusing on highest-risk groups will improve health for everyone. Much of our current research focuses on severe maternal morbidity (SMM). SMM encompasses adverse conditions that put pregnant people at risk of short and long-term consequences related to labor and delivery, including death. We also study other important perinatal outcomes, including stillbirth, preterm birth, structural congenital malformations and other maternal morbidities. We are interested in these outcomes individually, as well as in how they are connected to each other -- from a mechanistic standpoint (ie, do they share the same causes), and a lifecourse perspective (eg, how does an adverse newborn outcome affect the mom's postpartum health, and vice versa). Dr. Carmichael's training is in perinatal and nutritional epidemiology. She deeply appreciates her multi-disciplinary colleagues who make this work more meaningful by bringing their own varied perspectives and lived experiences, and their expertise in clinical care, qualitative and mixed methods, community engagement, and state-of-the-art epidemiologic approaches and biostatistical methods. |
Trung Pham Pediatrics
Pediatrics Last Updated: May 15, 2024 |
We study immunology of infectious diseases and host-microbe interactions. Our research program employs murine infection models and brings together immunology, tissue biology, microbiology, and genetics to uncover fundamental mechanisms of tissue immunity and immunophysiology during persistent bacterial infection. Our goals are to understand: 1) the innate and adaptive immune cellular mechanisms that contain pathogens during persistent infection; 2) how tissue physiological functions, such as tissue repair and nutrient regulation, are maintained during persistent infection; 3) how intracellular bacteria survive innate and adaptive antimicrobial mechanisms in infected tissues. We seek to recruit postdoctoral fellows who are passionate about advancing mechanistic understanding of infection biology and to provide a supportive, diverse environment for fellows to advance their scientific and career development.
|
PRISM mentor | Research Interests |
---|---|
Suzan Carmichael Maternal Fetal Medicine and Obstetrics
Maternal Fetal Medicine and Obstetrics Last Updated: July 13, 2022 |
Dr. Carmichael is a perinatal and nutritional epidemiologist and Professor of Pediatrics and Obstetrics and Gynecology at the Stanford University School of Medicine. Her research focuses on finding ways to improve maternal and infant health. Exposure themes include nutrition, social context, care, environmental contaminants and genetics. Outcome themes include severe maternal morbidity, stillbirth, birth defects, and preterm delivery. She is particularly interested in understanding the intersectionality of these varied types of exposures and outcomes and how they interact to impact health and health disparities, for the mother-baby dyad, in domestic as well as global health settings. She currently (mid 2020) has an opening in her lab for a post-doc focused on maternal health. |
SUZAN CARMICHAEL Maternal Fetal Medicine and Obstetrics
Maternal Fetal Medicine and Obstetrics Last Updated: January 29, 2023 |
Our team is committed to finding ways to improve maternal and infant health outcomes and equity by leading research that identifies effective leverage points for change, from upstream 'macro' social and structural factors, to downstream 'micro' clinical factors through a collaborative research approach that integrates epidemiologic approaches with community engagement and systems thinking. Disparities are prominent in maternal and infant health, so a lot of our work is centered on equity. Focusing on highest-risk groups will improve health for everyone. Much of our current research focuses on severe maternal morbidity (SMM). SMM encompasses adverse conditions that put pregnant people at risk of short and long-term consequences related to labor and delivery, including death. We also study other important perinatal outcomes, including stillbirth, preterm birth, structural congenital malformations and other maternal morbidities. We are interested in these outcomes individually, as well as in how they are connected to each other -- from a mechanistic standpoint (ie, do they share the same causes), and a lifecourse perspective (eg, how does an adverse newborn outcome affect the mom's postpartum health, and vice versa). Dr. Carmichael's training is in perinatal and nutritional epidemiology. She deeply appreciates her multi-disciplinary colleagues who make this work more meaningful by bringing their own varied perspectives and lived experiences, and their expertise in clinical care, qualitative and mixed methods, community engagement, and state-of-the-art epidemiologic approaches and biostatistical methods. |
Virginia Winn Maternal Fetal Medicine and Obstetrics
Maternal Fetal Medicine and Obstetrics Last Updated: January 27, 2023 |
Her lab seeks to understand the unique biological mechanisms of human placentation. While the placenta itself is one of the key characteristics for defining mammals, the human placenta is different from most available animal models: it is one of the most invasive placentas, and results in the formation of an organ comprised of cells from both the fetus and the mother. In addition to this fascinating chimerism, fetal cells are deeply involved in the remodeling of the maternal vasculature in order to redirect large volumes of maternal blood to the placenta to support the developing fetus. As such, the investigation of this human organ covers a large array of biological processes, and deals not only with understanding its endocrine function, but the physiologic process of immune tolerance, vascular remodeling, and cellular invasion. As a physician scientist, Dr. Winn’s ultimate goal is to see this knowledge translate to improved clinical care resulting in healthier mothers and babies. Her lab uses a combination of molecular, cellular, tissue and translational studies in their research. |
PRISM mentor | Research Interests |
---|---|
SUZAN CARMICHAEL Epidemiology and Population Health
Epidemiology and Population Health Last Updated: January 29, 2023 |
Our team is committed to finding ways to improve maternal and infant health outcomes and equity by leading research that identifies effective leverage points for change, from upstream 'macro' social and structural factors, to downstream 'micro' clinical factors through a collaborative research approach that integrates epidemiologic approaches with community engagement and systems thinking. Disparities are prominent in maternal and infant health, so a lot of our work is centered on equity. Focusing on highest-risk groups will improve health for everyone. Much of our current research focuses on severe maternal morbidity (SMM). SMM encompasses adverse conditions that put pregnant people at risk of short and long-term consequences related to labor and delivery, including death. We also study other important perinatal outcomes, including stillbirth, preterm birth, structural congenital malformations and other maternal morbidities. We are interested in these outcomes individually, as well as in how they are connected to each other -- from a mechanistic standpoint (ie, do they share the same causes), and a lifecourse perspective (eg, how does an adverse newborn outcome affect the mom's postpartum health, and vice versa). Dr. Carmichael's training is in perinatal and nutritional epidemiology. She deeply appreciates her multi-disciplinary colleagues who make this work more meaningful by bringing their own varied perspectives and lived experiences, and their expertise in clinical care, qualitative and mixed methods, community engagement, and state-of-the-art epidemiologic approaches and biostatistical methods. |
Thomas Robinson Epidemiology and Population Health
Epidemiology and Population Health Last Updated: January 27, 2023 |
Stanford Solutions Science Lab. The Stanford Solutions Science Lab designs solutions to improve health and well-being of children, families, and the planet. Dr. Robinson originated the solution-oriented research paradigm. He is known for his pioneering obesity prevention and treatment research, including the concept of stealth interventions. His research applies social cognitive models of behavior change to behavioral, social, environmental and policy interventions for children and families in real world settings, making the results relevant for informing clinical and public health practice and policy. His research is largely experimental, conducting rigorous school-, family- and community-based randomized controlled trials. He studies obesity and disordered eating, nutrition, physical activity/inactivity and sedentary behavior, the effects of television and other screen time, adolescent smoking, aggressive behavior, consumerism, and behaviors to promote environmental sustainability. Rich longitudinal datasets of physical, physiological, psychological, behavioral, social, behavioral, and multi-omics measures are available from our many community-based obesity prevention and treatment trials in low-income and racial/ethnic minority populations of children and adolescents and their parents. Stanford Screenomics Lab - Human Screenome Project. People increasingly live their lives through smartphones. Our Stanford Screenomics app captures everything that people see and do on their smartphone screens – a record of digital life – by taking a screenshot every 5 seconds. The resulting sequence of screenshots, make up an individual’s screenome, an unique and dynamic sequence of exposures, thoughts, feelings, and actions. To date, we have collected more than 350 million screenshots from 6-12 months of phone use from national samples of about 500 hundred adults and adolescents and their parents. Opportunities available to study the screenome to understand digital media use and its impacts on health and behavior, develop novel diagnostics and prognostics from the screenome, and deliver precision interventions to improve health and well being. An opportunity to help build this paradigm-disrupting new science. |
PRISM mentor | Research Interests |
---|---|
Suzanne Tharin Neurosurgery
Neurosurgery Last Updated: February 23, 2024 |
We study the roles of microRNAs in cortical projection neuron development, with an emphasis on corticospinal motor neurons. We have identified a group of mircoRNAs specifically enriched in corticospinal motor neurons during their development and are investigating their functions in cortical progenitors in vitro and in vivo, as well as in ES cells. |
PRISM mentor | Research Interests |
---|---|
Suzanne Pfeffer Biochemistry
Biochemistry Last Updated: August 15, 2023 |
Our lab seeks to understand the molecular basis of inherited Parkinson's Disease. Activating mutations in the LRRK2 kinase cause Parkinson's , and the major substrates of LRRK2 kinase are a subset of proteins called Rab GTPases. Together with our collaborators, we have discovered that phosphorylation of Rab proteins completely changes the partner proteins with which they interact and leads to a blockade in the formation of critical signaling structures called primary cilia. We are using biochemical, cell biological and genome-wide approaches to study the molecular cell biology of Parkinson's Disease by focusing on the consequences of Rab GTPase phosphorylation. Our work includes single molecule biochemical experiments to undertstand the kinase and its corresponding phosphatase--how they are recruited to membranes and activated. We also study LRRK2-mediated loss of cilia in specific neuronal cell types and astrocytes in both mouse and human brains. We are using state of the art microscopic tools to understand why cilia are lost and how this leads to Parkinson's disease. |
PRISM mentor | Research Interests |
---|---|
Tamar Green Psyc: Child Psychiatry
Psyc: Child Psychiatry Last Updated: February 21, 2024 |
1. Genetic of neuropsychiatric condisions: Concentrating on isolating genetic factors that drive neurodevelopmental disorders like ASD and ADHD. The focus is on unraveling the complex genetic architecture using monogenic genetic conditions, this approach called a genetic first approach in psychiatry. 2. Ras Pathway's Impact on Neurodevelopment: Probing the Ras/MAPK pathway's role in developmental brain disorders, assessing how mutations lead to clinical manifestations in disorders such as Noonan syndrome. The goal is to clarify the pathway's influence on neural circuitry and identify actionable targets for therapy. 3. Integrative Neuroimaging for Clinical Outcomes: Leveraging advanced neuroimaging to quantify brain changes and connectivity patterns in genetic conditions. This rigorous analysis aims to establish neuroimaging as a quantitative tool for evaluating the efficacy of novel treatments in clinical trials. Emphasizing the development of brain-based metrics as a means to validate and refine treatment strategies, with the ultimate objective of personalized medicine.
|
PRISM mentor | Research Interests |
---|---|
Tanya Stoyanova Radiology
Radiology Last Updated: July 13, 2022 |
Stoyanova lab is interested in understanding fundamental molecular mechanisms underlying the development of epithelial cancers and their utility as biomarkers and therapeutic targets. Currently, the major focus of our group is in prostate cancer. We are also interested in breast and neuroendocrine cancers. The ultimate goals of the laboratory are to: 1) improve the stratification of indolent from aggressive prostate cancer and 2) guide the development of novel and effective therapeutic strategies for metastatic cancers. |
Utkan Demirci Radiology
Radiology Last Updated: July 13, 2022 |
The Demirci Bio-Acoustic MEMS in Medicine Lab (BAMM) specializes in creating technologies to manipulate cells in nanoliter volumes to enable solutions for real world problems in medicine including applications in infectious disease diagnostics and monitoring for global health, cancer early detection, cell encapsulation in nanoliter droplets for cryobiology, and bottom-up tissue engineering. |
Utkan Demirci Radiology
Radiology Last Updated: August 11, 2020 |
Microfludics Diagnostics Early Cancer Detection Exosomes
|
Utkan Demirci Radiology
Radiology Last Updated: July 23, 2021 |
Micro nano scale technologies in medicine Extracellular vesciles Early Cancer Detection Biomedical engineering microrobotics
|
Utkan Demirci Radiology
Radiology Last Updated: January 12, 2022 |
The Demirci Bio-Acoustic MEMS in Medicine Lab (BAMM) specializes in creating technologies to manipulate cells in nanoliter volumes to enable solutions for real world problems in medicine including applications in infectious disease diagnostics and monitoring for global health, cancer early detection, cell encapsulation in nanoliter droplets for cryobiology, and bottom-up tissue engineering. areas of research are : Micro nano scale technologies in medicine Extracellular vesciles Early Cancer Detection Biomedical engineering microrobotics
|
Utkan Demirci Radiology
Radiology Last Updated: May 31, 2024 |
|
UTKAN DEMIRCI Radiology
Radiology Last Updated: June 30, 2022 |
Utkan Demirci is a professor at Stanford University School of Medicine and serves as the interim division chief and co-director of the Canary Center for Cancer Early Detection in the Department of Radiology. His group focuses on developing innovative microfluidic biomedical technology platforms with broad applications to multiple diseases. Some of his inventions have already been translated into Food and Drug Administration-approved products serving patients. He has mentored and trained many successful scientists, entrepreneurs, and academicians. Currently the group has a strong core focused on bio fabrication, Extracellular vesicles enrichment and isolation, small scale robotics for biomedicine and development of point of care metamaterial based optical sensors.
|
PRISM mentor | Research Interests |
---|---|
Ted Graves Radiation Oncology
Radiation Oncology Last Updated: July 13, 2022 |
My laboratory is focused on development and application of molecular imaging techniques towards understanding radiation and cancer biology and improving treatment of human disease. Using modalities including positron emission tomography (PET), computed tomography (CT), fluorescence imaging, bioluminescence imaging, and small animal conformal radiotherapy, we are investigating the molecular and physiologic factors that determine tumor response to therapy. In addition, we are applying this knowledge towards the development of combination therapies that improve tumor response and minimize normal tissue toxicity. We are a multi-disciplinary group with expertise in engineering, biology, chemistry, medicine, and computer science.
|
PRISM mentor | Research Interests |
---|---|
Teresa Nicolson Surg: Otolaryngology
Surg: Otolaryngology Last Updated: November 29, 2021 |
Our research focuses on genetic forms of hearing loss and vestibular dysfunction. As many features of the auditory/vestibular system are highly conserved among vertebrates, we use zebrafish as our animal model and have identified over a dozen genes that are required for hearing and balance. Our studies have yielded important insights into the molecular basis of sensory hair-cell function, especially with regard to mechanotransduction and synaptic transmission. To understand the function of deafness genes and delve deeper into the underlying biology, our lab uses a wide range of methods to analyze mutant phenotypes including live cell imaging, physiological experiments, CRISPR gene editing, transcriptomic methods, and auditory/vestibular behavioral analyses. Department URL: https://med.stanford.edu/ohns.html
|
PRISM mentor | Research Interests |
---|---|
Thomas Robinson Ped: General Pediatrics
Ped: General Pediatrics Last Updated: January 27, 2023 |
Stanford Solutions Science Lab. The Stanford Solutions Science Lab designs solutions to improve health and well-being of children, families, and the planet. Dr. Robinson originated the solution-oriented research paradigm. He is known for his pioneering obesity prevention and treatment research, including the concept of stealth interventions. His research applies social cognitive models of behavior change to behavioral, social, environmental and policy interventions for children and families in real world settings, making the results relevant for informing clinical and public health practice and policy. His research is largely experimental, conducting rigorous school-, family- and community-based randomized controlled trials. He studies obesity and disordered eating, nutrition, physical activity/inactivity and sedentary behavior, the effects of television and other screen time, adolescent smoking, aggressive behavior, consumerism, and behaviors to promote environmental sustainability. Rich longitudinal datasets of physical, physiological, psychological, behavioral, social, behavioral, and multi-omics measures are available from our many community-based obesity prevention and treatment trials in low-income and racial/ethnic minority populations of children and adolescents and their parents. Stanford Screenomics Lab - Human Screenome Project. People increasingly live their lives through smartphones. Our Stanford Screenomics app captures everything that people see and do on their smartphone screens – a record of digital life – by taking a screenshot every 5 seconds. The resulting sequence of screenshots, make up an individual’s screenome, an unique and dynamic sequence of exposures, thoughts, feelings, and actions. To date, we have collected more than 350 million screenshots from 6-12 months of phone use from national samples of about 500 hundred adults and adolescents and their parents. Opportunities available to study the screenome to understand digital media use and its impacts on health and behavior, develop novel diagnostics and prognostics from the screenome, and deliver precision interventions to improve health and well being. An opportunity to help build this paradigm-disrupting new science. |
PRISM mentor | Research Interests |
---|---|
Thomas Robinson Med: Prevention Research Cntr
Med: Prevention Research Cntr Last Updated: January 27, 2023 |
Stanford Solutions Science Lab. The Stanford Solutions Science Lab designs solutions to improve health and well-being of children, families, and the planet. Dr. Robinson originated the solution-oriented research paradigm. He is known for his pioneering obesity prevention and treatment research, including the concept of stealth interventions. His research applies social cognitive models of behavior change to behavioral, social, environmental and policy interventions for children and families in real world settings, making the results relevant for informing clinical and public health practice and policy. His research is largely experimental, conducting rigorous school-, family- and community-based randomized controlled trials. He studies obesity and disordered eating, nutrition, physical activity/inactivity and sedentary behavior, the effects of television and other screen time, adolescent smoking, aggressive behavior, consumerism, and behaviors to promote environmental sustainability. Rich longitudinal datasets of physical, physiological, psychological, behavioral, social, behavioral, and multi-omics measures are available from our many community-based obesity prevention and treatment trials in low-income and racial/ethnic minority populations of children and adolescents and their parents. Stanford Screenomics Lab - Human Screenome Project. People increasingly live their lives through smartphones. Our Stanford Screenomics app captures everything that people see and do on their smartphone screens – a record of digital life – by taking a screenshot every 5 seconds. The resulting sequence of screenshots, make up an individual’s screenome, an unique and dynamic sequence of exposures, thoughts, feelings, and actions. To date, we have collected more than 350 million screenshots from 6-12 months of phone use from national samples of about 500 hundred adults and adolescents and their parents. Opportunities available to study the screenome to understand digital media use and its impacts on health and behavior, develop novel diagnostics and prognostics from the screenome, and deliver precision interventions to improve health and well being. An opportunity to help build this paradigm-disrupting new science. |
PRISM mentor | Research Interests |
---|---|
Thomas Robinson Stanford Cancer Center
Stanford Cancer Center Last Updated: January 27, 2023 |
Stanford Solutions Science Lab. The Stanford Solutions Science Lab designs solutions to improve health and well-being of children, families, and the planet. Dr. Robinson originated the solution-oriented research paradigm. He is known for his pioneering obesity prevention and treatment research, including the concept of stealth interventions. His research applies social cognitive models of behavior change to behavioral, social, environmental and policy interventions for children and families in real world settings, making the results relevant for informing clinical and public health practice and policy. His research is largely experimental, conducting rigorous school-, family- and community-based randomized controlled trials. He studies obesity and disordered eating, nutrition, physical activity/inactivity and sedentary behavior, the effects of television and other screen time, adolescent smoking, aggressive behavior, consumerism, and behaviors to promote environmental sustainability. Rich longitudinal datasets of physical, physiological, psychological, behavioral, social, behavioral, and multi-omics measures are available from our many community-based obesity prevention and treatment trials in low-income and racial/ethnic minority populations of children and adolescents and their parents. Stanford Screenomics Lab - Human Screenome Project. People increasingly live their lives through smartphones. Our Stanford Screenomics app captures everything that people see and do on their smartphone screens – a record of digital life – by taking a screenshot every 5 seconds. The resulting sequence of screenshots, make up an individual’s screenome, an unique and dynamic sequence of exposures, thoughts, feelings, and actions. To date, we have collected more than 350 million screenshots from 6-12 months of phone use from national samples of about 500 hundred adults and adolescents and their parents. Opportunities available to study the screenome to understand digital media use and its impacts on health and behavior, develop novel diagnostics and prognostics from the screenome, and deliver precision interventions to improve health and well being. An opportunity to help build this paradigm-disrupting new science. |
Utkan Demirci Stanford Cancer Center
Stanford Cancer Center Last Updated: May 31, 2024 |
Utkan Demirci is a professor at Stanford University School of Medicine and serves as the interim division chief and co-director of the Canary Center for Cancer Early Detection in the Department of Radiology. His group focuses on developing innovative microfluidic biomedical technology platforms with broad applications to multiple diseases. Some of his inventions have already been translated into Food and Drug Administration-approved products serving patients. He has mentored and trained many successful scientists, entrepreneurs, and academicians. Currently, the group has a strong core focused on bio fabrication, Extracellular vesicle enrichment, and isolation, small-scale robotics for biomedicine, and the development of point-of-care metamaterial-based optical sensors. |
PRISM mentor | Research Interests |
---|---|
Thomas Robinson Woods Institute
Woods Institute Last Updated: January 27, 2023 |
Stanford Solutions Science Lab. The Stanford Solutions Science Lab designs solutions to improve health and well-being of children, families, and the planet. Dr. Robinson originated the solution-oriented research paradigm. He is known for his pioneering obesity prevention and treatment research, including the concept of stealth interventions. His research applies social cognitive models of behavior change to behavioral, social, environmental and policy interventions for children and families in real world settings, making the results relevant for informing clinical and public health practice and policy. His research is largely experimental, conducting rigorous school-, family- and community-based randomized controlled trials. He studies obesity and disordered eating, nutrition, physical activity/inactivity and sedentary behavior, the effects of television and other screen time, adolescent smoking, aggressive behavior, consumerism, and behaviors to promote environmental sustainability. Rich longitudinal datasets of physical, physiological, psychological, behavioral, social, behavioral, and multi-omics measures are available from our many community-based obesity prevention and treatment trials in low-income and racial/ethnic minority populations of children and adolescents and their parents. Stanford Screenomics Lab - Human Screenome Project. People increasingly live their lives through smartphones. Our Stanford Screenomics app captures everything that people see and do on their smartphone screens – a record of digital life – by taking a screenshot every 5 seconds. The resulting sequence of screenshots, make up an individual’s screenome, an unique and dynamic sequence of exposures, thoughts, feelings, and actions. To date, we have collected more than 350 million screenshots from 6-12 months of phone use from national samples of about 500 hundred adults and adolescents and their parents. Opportunities available to study the screenome to understand digital media use and its impacts on health and behavior, develop novel diagnostics and prognostics from the screenome, and deliver precision interventions to improve health and well being. An opportunity to help build this paradigm-disrupting new science. |
PRISM mentor | Research Interests |
---|---|
Thomas Robinson HumanCentered Artificial Inte
HumanCentered Artificial Inte Last Updated: January 27, 2023 |
Stanford Solutions Science Lab. The Stanford Solutions Science Lab designs solutions to improve health and well-being of children, families, and the planet. Dr. Robinson originated the solution-oriented research paradigm. He is known for his pioneering obesity prevention and treatment research, including the concept of stealth interventions. His research applies social cognitive models of behavior change to behavioral, social, environmental and policy interventions for children and families in real world settings, making the results relevant for informing clinical and public health practice and policy. His research is largely experimental, conducting rigorous school-, family- and community-based randomized controlled trials. He studies obesity and disordered eating, nutrition, physical activity/inactivity and sedentary behavior, the effects of television and other screen time, adolescent smoking, aggressive behavior, consumerism, and behaviors to promote environmental sustainability. Rich longitudinal datasets of physical, physiological, psychological, behavioral, social, behavioral, and multi-omics measures are available from our many community-based obesity prevention and treatment trials in low-income and racial/ethnic minority populations of children and adolescents and their parents. Stanford Screenomics Lab - Human Screenome Project. People increasingly live their lives through smartphones. Our Stanford Screenomics app captures everything that people see and do on their smartphone screens – a record of digital life – by taking a screenshot every 5 seconds. The resulting sequence of screenshots, make up an individual’s screenome, an unique and dynamic sequence of exposures, thoughts, feelings, and actions. To date, we have collected more than 350 million screenshots from 6-12 months of phone use from national samples of about 500 hundred adults and adolescents and their parents. Opportunities available to study the screenome to understand digital media use and its impacts on health and behavior, develop novel diagnostics and prognostics from the screenome, and deliver precision interventions to improve health and well being. An opportunity to help build this paradigm-disrupting new science. |
PRISM mentor | Research Interests |
---|---|
Thomas Shutt Physics
Physics Last Updated: February 23, 2024 |
Together with Dan Akerib, Tom works on the LUX and LZ dark matter experiments to search for dark matter in the form of Weakly Interacting Massive Particles, or WIMPs. The detectors use liquid xenon as a target medium in a time projection chamber, or TPC. The Large Underground Xenon (LUX) experiment is currently operating a 250-kg target in the former Homestake gold mine in the Black Hills of South Dakota. Preparations are underway atSLAC to design and build the 7-ton successor, known as LUX-ZEPLIN (LZ). The group is involved in many aspects of data analysis, detector design, xenon purification, control andreadout systems, and detector performance studies. |
Tom Abel Physics
Physics Last Updated: October 18, 2021 |
Tom's current research focuses on studying the formation and evolution of galaxies with new numerical techniques, however, he enjoys all areas of non-linear physics which can be addressed using supercomputer calculations! His research interests span dark matter dynamics, the physics of collisionless shocks, investigating the role that cosmic rays and magnetic fields play in the formation and evolution of galaxies, modeling the formation of stars and black holes as well as turbulence, and applications of numerical general relativity. |
PRISM mentor | Research Interests |
---|---|
Thomas Shutt Kavli Institute
Kavli Institute Last Updated: February 23, 2024 |
Together with Dan Akerib, Tom works on the LUX and LZ dark matter experiments to search for dark matter in the form of Weakly Interacting Massive Particles, or WIMPs. The detectors use liquid xenon as a target medium in a time projection chamber, or TPC. The Large Underground Xenon (LUX) experiment is currently operating a 250-kg target in the former Homestake gold mine in the Black Hills of South Dakota. Preparations are underway atSLAC to design and build the 7-ton successor, known as LUX-ZEPLIN (LZ). The group is involved in many aspects of data analysis, detector design, xenon purification, control andreadout systems, and detector performance studies. |
Tom Abel Kavli Institute
Kavli Institute Last Updated: October 18, 2021 |
Tom's current research focuses on studying the formation and evolution of galaxies with new numerical techniques, however, he enjoys all areas of non-linear physics which can be addressed using supercomputer calculations! His research interests span dark matter dynamics, the physics of collisionless shocks, investigating the role that cosmic rays and magnetic fields play in the formation and evolution of galaxies, modeling the formation of stars and black holes as well as turbulence, and applications of numerical general relativity. |
PRISM mentor | Research Interests |
---|---|
Thomas Wolf SLAC National Accelerator Lab
SLAC National Accelerator Lab Last Updated: February 24, 2023 |
The Wolf Research Group investigates ultrafast photochemical dynamics in isolated molecules. We are part of the Stanford PULSE Institute, a Stanford independent laboratory and a research center at SLAC National Accelerator Laboratory. Our offices and lab space are on the SLAC campus. For our research, we use SLAC’s large-scale research facilities, such as the Linac Coherent Light Source (LCLS), the world’s first hard X-ray free electron laser, and the megaelectronvolt ultrafast electron diffraction (MeV-UED) facility within LCLS. |
PRISM mentor | Research Interests |
---|---|
Tim Assimes Med: Cardiovascular Medicine
Med: Cardiovascular Medicine Last Updated: July 13, 2022 |
Our investigative focus is the design, conduct, analysis, and interpretation of human molecular epidemiology studies of complex cardiovascular disease (CVD) related traits including coronary atherosclerosis and risk factors for coronary atherosclerosis. In addition to performing discovery and validation population genomic studies, we use contemporary genetic studies to gain important insight on the causal and mechanistic nature of associations between purported risk factors and adverse cardiovascular related health outcomes through instrumental variable analyses and genetic risk score association studies of intermediate phenotypes. Successful applicants will be immersed in cutting-edge molecular epidemiology studies of traits related to cardiovascular disease using large scale population biobanks including the Million Veteran Program, the Women’s Health Initiative, and the UK Biobank, with the goal of improving biological understanding, refining risk prediction, and discovering new therapeutic targets. |
PRISM mentor | Research Interests |
---|---|
Tino Pleiner Molecular & Cellular Phys
Molecular & Cellular Phys Last Updated: January 17, 2024 |
Research overview: How does the cell make and quality control multi-pass membrane proteins like transporters, receptors and ion channels that are essential for cellular physiology? Our lab combines mechanistic cell biology, (structural) biochemistry and protein engineering to dissect the pathways and molecular machines that mature roughly 5,000 human membrane proteins to a fully functional state. We are developing nanobody-based tools to acutely perturb such dynamic intracellular pathways directly at the protein level and assess immediate functional consequences to the nascent (membrane) proteome. A related area of focus will be to generate highly specific reagents that can fine-tune the cellular stress responses that adjust cellular protein folding and degradation capacity. Such reagents have potential future therapeutic applications as they can be used to either correct or increase the dysregulation of protein homeostasis in neurodegeneration/ageing or cancer, respectively. Major techniques in the lab include: mammalian cell culture, flow cytometry, FACS, CRISPR knock-outs/ knock-downs/knock-ins, genome-wide perturbation screens, phage & ribosome display, protein purification from mammalian and E. coli cells, in vitro translation and membrane insertion assays. Many of these techniques are highly sought-after in the biotech industry as well. Tino is the first in his family to attend college (FirstGen) and this experience has shaped his approach to mentorship. The successful candidate will have access to close mentorship and will witness first-hand how to set up a new lab. The lab has fantastic resources and is surrounded by a world-class, collaborative scientific environment. Outside from the lab, life in the sunny Bay area offers spectacular culinary, cultural, and outdoor recreational opportunities. The Pleiner lab will be an inclusive space that fosters learning & curiosity, promotes team work and values mentorship to drive an innovative research program that pushes the boundaries of molecular biology. Relevant publications: (*denotes equal contribution co-first- and † denotes co-corresponding authorship) Stevens, T.A., Tomaleri, G.P., Hazu, M., Wei, S., Nguyen, V.N., DeKalb, C., Voorhees, R.M.† and Pleiner, T.† (2023) A nanobody-based strategy for rapid and scalable purification of native human protein complexes. Nature Protocols Pleiner, T.*, Hazu, M.*, Pinton Tomaleri, G.*, Nguyen, V.N., Januszyk, K. and Voorhees, R.M. (2023) A selectivity filter in the ER membrane protein complex limits protein misinsertion at the ER. J Cell Biol 222 e202212007. (On the cover) Pleiner, T., Hazu, M., Tomaleri, G.P., Januszyk, K., Oania, R.S., Sweredoski, M.J., Moradian, A., Guna, A. and Voorhees, R.M. (2021) WNK1 is an assembly factor for the human ER membrane protein complex. Mol Cell, 81, 2693-2704.e12. Pleiner, T.*, Tomaleri, G.P.*, Januszyk, K.*, Inglis, A.J., Hazu, M. and Voorhees, R.M. (2020) Structural basis for membrane insertion by the human ER membrane protein complex. Science, 369, 433-436. Pleiner, T.†, Bates, M.† and Görlich, D.† (2018) A toolbox of anti-mouse and anti-rabbit IgG secondary nanobodies. J Cell Biol, 217, 1143-1154. |
PRISM mentor | Research Interests |
---|---|
Tobias Gerstenberg Psychology
Psychology Last Updated: August 17, 2020 |
The Causality in Cognition Lab at Stanford University studies the role of causality in our understanding of the world, and of each other. Some of the questions that guide our research:
In our research, we formalize people’s mental models as computational models that yield quantitative predictions about a wide range of situations. To test these predictions, we use a combination of large-scale online experiments, interactive experiments in the lab, and eye-tracking experiments. |
PRISM mentor | Research Interests |
---|---|
Todd Martinez Chemistry
Chemistry Last Updated: August 11, 2020 |
Current research in the Martínez Group aims to make molecular modeling both predictive and routine. New approaches to interactive molecular simulation are being developed, in which users interact with a virtual-reality based molecular modeling kit that fully understands quantum mechanics. New techniques to discover heretofore unknown chemical reactions are being developed and tested, exploiting the many efficient methods that the Martínez group has introduced for solving quantum mechanical problems quickly, using a combination of physical/chemical insights and commodity videogaming hardware. |
Tom Markland Chemistry
Chemistry Last Updated: February 23, 2024 |
Our research focuses on the theory and simulation of chemical systems to address problems at the interface of quantum mechanics and statistical mechanics, with applications ranging from chemistry and biology to geology and materials science. Our research frequently explores theories of hydrogen bonding, the interplay between structure and dynamics, systems with multiple time and length-scales, and quantum mechanical effects. Particular current interests include proton and electron transfer in materials and enzymatic systems, atmospheric isotope separation, and the control of catalytic chemical reactivity in heterogeneous environments. |
PRISM mentor | Research Interests |
---|---|
Todd Wagner Surg: General Surgery
Surg: General Surgery Last Updated: August 13, 2020 |
Health economics, implementation science, access to care, use and effects of consumer health information. Co-director of the NCI/VA Big Data Fellowship. https://www.herc.research.va.gov/include/page.asp?id=bd-step |
PRISM mentor | Research Interests |
---|---|
Tom Clandinin Neurobiology
Neurobiology Last Updated: June 25, 2023 |
My research program uses the fruit fly Drosophila to investigate neural circuits at the cellular and molecular levels. In this context, we predominantly study circuits involved in visual processing, particularly motion detection, as well as the sensorimotor transformations that underpin visually-guided locomotion. The development of novel molecular techniques is crucial for this work. Our ongoing research encompasses three types of tools: high-speed voltage imaging using genetically encoded indicators (like those you propose to optimize) using a variety of imaging strategies, cell-type-specific gene disruption tools, and molecular perturbations of energy metabolism in the brain. In addition, we are very interested in how the molecular underpinnings of neurodegenerative diseases like Parkinson's Disease alter neuronal function, and use the fly as a model system in which to better dissect these disorders. |
PRISM mentor | Research Interests |
---|---|
Upi Singh Med: Infectious Diseases
Med: Infectious Diseases Last Updated: February 23, 2024 |
Singh lab - basic and translational science for parasitic amebic pathogens including gene expression, developmental control and identification of new drug regimens.
|
PRISM mentor | Research Interests |
---|---|
Victor Lee Graduate School of Education
Graduate School of Education Last Updated: February 09, 2024 |
Data literacy, Data Science Education, and AI Literacy Our lab focuses on research and design of learning experiences and resources that can provide more critical, humanistic understanding and access to increasingly pervasive STEM topics, specifically those that focus on data and AI. We research what makes these ideas challenging or less accessible and work in collaboration with educators to devise and test solutions that can range from curricula, software, or new technologies. Work primarily involves K-12 schools although past projects have involved libraries, homes, and museums. |
PRISM mentor | Research Interests |
---|---|
Vinicio de Jesus Perez Med: Pulmonary & Critical Care Med
Med: Pulmonary & Critical Care Med Last Updated: July 13, 2022 |
Several studies have now shown the importance of Wnt signaling for heart tissue repair in the left ventricle, but fewer studies have been done to understand Wnt’s role in right ventricle hypertrophy. The remodeling of the right ventricle during pulmonary hypertension leads to changes and impairment in the vasculature, cardiomyocyte dysfunction and fibrosis. Our lab has shown the importance of Wnt signaling in pulmonary angiogenesis and we hypothesize that Wnt expression in the cardiac cells is critical to improve their response to the pressure load and with this, prevent heart failure. Using cardiac muscle cells and endothelial cells derived from healthy and idiopathic PH patients; we are screening and comparing the expression of several Wnts between the two groups in order to find Wnt candidates for our study. We aim to find a Wnt-associated gain of function in heart cells after injury during PH |
PRISM mentor | Research Interests |
---|---|
Virginia Winn Gynecology and Obstetrics
Gynecology and Obstetrics Last Updated: January 12, 2022 |
The Winn laboratory seeks to understand the unique biological mechanisms of human placentation. Abnormalities in placental development and function account for many obstetric complications. The pregnancy complication of preclampsia is the primary diseease process that the lab studies ,which is a major couase of maternal and fetal morbidity and mortality. While the placenta itself is one of the key characteristics for defining mammals, placental development is not highly conserved across species and therefore human placental biology is different from most available animal models: it is one of the most invasive placentas, and results in the formation of an organ comprised of cells from both the fetus and the mother. In addition to this fascinating chimerism that requires maternal immune adaptations to avoid rejection of the allograph fetus, placental cells are deeply involved in the remodeling of the maternal vasculature, in order to redirect large volumes of maternal blood to the placenta to support the developing fetus. The molecular and cellular aspects of human placenta invasion are often copted by cancers. The placenta is also a critical endorcrine organ which orchestrates the many physiologic and metabolic changes that occur in pregnancy. As such, the investigation of this human organ covers a broad array of human biological processes. The lab is dedicated to undertake, the challenge of shedding understanding into the human placental process of immune tolerance, vascular remodeling, cellular invasion and endocrine function. The Winn Lab uses a combination of human samples, in vitro cellular and organoid model systems to dissect the molecular and cellular basis of placental function as well as investigates pregnancy cohort for translational studies to improve prediction, diagnosis and treatment of obstetrical complications. The ultimate goal of the Winn Lab is to improve pregnancy health for the pregnant person and their offspring and train the next generation of reproductive and perinatal scientists.
|
Vittorio Sebastiano Gynecology and Obstetrics
Gynecology and Obstetrics Last Updated: February 23, 2024 |
Our research interest and focus is at the interface of reproductive biology, embryonic development, and longevity. We use induced pluripotent stem cells to model genetic and degenerative diseases with the hope to understand the molecular lynchpin of the disease but also to develop stem cell based therapies that would be definitive and curative. A particular emphasis is on pediatric diseases (i.e. 22q11DS), women' health, and infertility. We are developing protocols to efficiently generate in vitro engineered thymic tissues for the treatment of immunological dysfunctions, and germ cells with the goal to treat infertility both in men and women. In addition, we have recently discovered that by leveraging the principle of embryonic epigenetic reprogramming, we can promote a process of cellular rejuvenation that can be broadly applied to multiple cell types, tissues, and organs. We believe this is a novel and paradigm-shifting approach to treat aging and aging-associated diseases and we are testing this in a number of different diseases. |
PRISM mentor | Research Interests |
---|---|
Virginia Winn Reproductive Biology
Reproductive Biology Last Updated: January 27, 2023 |
Her lab seeks to understand the unique biological mechanisms of human placentation. While the placenta itself is one of the key characteristics for defining mammals, the human placenta is different from most available animal models: it is one of the most invasive placentas, and results in the formation of an organ comprised of cells from both the fetus and the mother. In addition to this fascinating chimerism, fetal cells are deeply involved in the remodeling of the maternal vasculature in order to redirect large volumes of maternal blood to the placenta to support the developing fetus. As such, the investigation of this human organ covers a large array of biological processes, and deals not only with understanding its endocrine function, but the physiologic process of immune tolerance, vascular remodeling, and cellular invasion. As a physician scientist, Dr. Winn’s ultimate goal is to see this knowledge translate to improved clinical care resulting in healthier mothers and babies. Her lab uses a combination of molecular, cellular, tissue and translational studies in their research. |
PRISM mentor | Research Interests |
---|---|
Vivek Bhalla Med: Nephrology
Med: Nephrology Last Updated: January 26, 2022 |
Dr. Bhalla received his training in molecular biology at UC San Francisco. His postdoctoral work centered on the regulation of aldosterone-mediated sodium transport in health and disease. In his laboratory he uses both in vitro and in vivo approaches for several projects related to the role of the kidney in health, diabetes, and hypertension. (1) Diabetic kidney disease is costly and consequential. Diabetic kidney disease is the most common form of chronic kidney disease in the world, yet no curative therapy is available. Studies of the susceptibility of diabetic kidney disease led to the discovery of differential regulation of endothelial-specific molecule-1, Esm-1 (endocan) in susceptible strains of mice. Esm-1 is a secreted proteoglycan that is enriched in glomerular endothelium and inhibits interferon signaling in glomeruli in the setting of diabetes and other inflammatory diseases. Ongoing rescue and deletion experiments explore the role of Esm-1 in diabetes and diabetic kidney disease. We also study the regulation of Esm-1 transcription and protein stability. (2) Investigation of the mechanisms of hypertension in the setting of obesity and insulin resistance using renal tubular epithelial insulin receptor deletion challenged the role of insulin in the hypertension of obesity, insulin resistance, and the metabolic syndrome. These studies also shed light on the role of insulin in control of glucose reabsorption via SGLT2. Ongoing studies focus on molecular mechanisms of insulin-regulated SGLT2 and its contrast with insulin resistant pathways in other cell types and tissues. (3) Inhibition of sodium reabsorption using diuretics is a mainstay of therapy for hypertension and edema-forming states. Study on the consequences of diuretic therapy using tubular morphometry and single cell approaches have led to additional work on mechanisms of tubular remodeling in vivo.
|
PRISM mentor | Research Interests |
---|---|
Vivianne Tawfik Anesthes, Periop & Pain Med
Anesthes, Periop & Pain Med Last Updated: February 23, 2024 |
Chronic pain affects 1 in 3 Americans at a huge cost to society. A more thorough understanding of the basic mechanisms contributing to chronic pain is crucial to the development of therapies that target the likely unique underlying causes of diverse pain conditions. Projects in the Tawfik Lab use clinically-informed basic science approaches to further understand the crosstalk between the nervous system and the immune system in several mouse models of perioperative injury. In particular, we have an interest in CNS glial cells (astrocytes and microglia) which, after injury, can contribute to central sensitization and persistence of pain. Preclinical use of glial modulators has been successful at reversing existing pain, however, translational efforts have thus far failed. We strive to further understand glial subtypes and functional phenotypes in order to better tailor glial-directed therapies. Our projects involve collaborations with several other labs in Neurology, Radiology and Anesthesiology in a collegial environment focused on rigorous science and close mentorship. |
PRISM mentor | Research Interests |
---|---|
Wah Chiu Bioengineering
Bioengineering Last Updated: August 18, 2023 |
In our laboratory, we are at the forefront of cutting-edge research focused on the integration of cryogenic electron microscopy and tomography with state-of-the-art artificial intelligence-driven image analysis techniques. Our primary objective is to uncover distinctive and common cellular structural patterns associated with various human diseases. With access to mulitple state-of-the-art electron cryomicroscopes and cutting-edge detectors, our laboratory is well-equipped to advance the field. Our methodological innovations are motivated by the imperative to gain deeper insights into disease pathologies and to pinpoint potential therapeutic targets within cells. We are active engaging extensive collaborations with biomedical researchers spanning diverse domains including neurodegeneration, visual impairments, viral infections, cancer and cardiovascular disorders. This collaborative approach enables us to look for possible subcellular structure patterns common to these diseases, tackle complex disease-related questions from multiple angles, enriching our understanding of these conditions and opening new avenues for potential interventions.
|
PRISM mentor | Research Interests |
---|---|
Wendy Gu Mechanical Engineering
Mechanical Engineering Last Updated: June 28, 2022 |
- Mechanical behavior of nanomaterials and nanostructured metals - Nano and metal additive manufacturing - Materials at extreme conditions (e.g. high pressure) - Materials for sustainability (e.g. hydrogen economy, batteries) |