PRISM Mentors
| PRISM mentor | Research Interests |
|---|---|
|
Ruijiang Li Radiation Oncology
Radiation Oncology Last Updated: August 11, 2020 |
My lab is focused on the development of imaging and molecular biomarkers for precision cancer medicine. We are interested in a broad range of clinical applications, including early cancer detection, diagnosis, prognostication, and prediction of treatment response. To achieve this goal, we integrate and analyze large-scale patient data sets with clinical annotations, including both imaging (radiologic, histopathologic) and molecular (genomic, epigenomic, transcriptomic) data. In addition, we develop and apply novel statistical and machine learning methods. We are a multidisciplinary team with a diverse background and yet converging theme. Our ultimate goal is to clinically translate novel biomarkers to guide selection of optimal therapy and improve outcomes for cancer patients.
|
| PRISM mentor | Research Interests |
|---|---|
|
Russ Poldrack Psychology
Psychology Last Updated: July 13, 2022 |
Our lab uses the tools of cognitive neuroscience to understand the brain systems involved in decision making, executive function, and behavioral change. We also develop tools to improve the reproducibility and transparency of neuroimaging research, including data sharing and data analysis. |
|
Russell Poldrack Psychology
Psychology Last Updated: January 13, 2022 |
Our lab uses the tools of cognitive neuroscience to understand how decision making, executive control, and learning and memory are implemented in the human brain. We also develop neuroinformatics tools and resources to help researchers make better sense of data and to do research that is more transparent and reproducible. |
|
Russell Poldrack Psychology
Psychology Last Updated: June 27, 2022 |
My lab's research uses neuroimaging to understand the brain systems underlying decision making and executive function. We are also engaged in the development of neuroinformatics tools to help improve the reproducibility and transparency of neuroscience, including the Openneuro.org and Neurovault.org data sharing projects and the Cognitive Atlas ontology. |
| PRISM mentor | Research Interests |
|---|---|
|
Ruth Huttenhain Molecular and Cellular Physiology
Molecular and Cellular Physiology Last Updated: January 23, 2024 |
Lab overview The communication between cells and their environment depends on a finely tuned decoding of extracellular cues into an array of intracellular signaling cascades that drive a cellular response. These signals are integrated through highly dynamic and context specific signaling networks that collectively define the phenotypic output. Given the complexity and dynamic state of signaling networks, the current understanding of their constituents and how they are spatiotemporally regulated in the cell as a result of a specific input is incomplete. The Huttenhain lab studies mechanisms of intracellular signal integration through G protein-coupled receptors (GPCRs) by employing an interdisciplinary approach to probe, model, and predict how signaling network dynamics translate extracellular cues into specific phenotypic outputs. GPCRs represent the largest family of membrane receptors and mediate most of our physiological responses to hormones, neurotransmitters and environmental stimulants. Developing quantitative proteomics approaches to capture the spatiotemporal organization of signaling networks and combining these with functional genomics to study their impact on physiology, we aim to better understand GPCR signaling and to provide a solid foundation for the design and testing of novel therapeutics targeting GPCRs with higher specificity and efficacy. Relevant publications
|
| PRISM mentor | Research Interests |
|---|---|
|
Ryann Fame Neurosurgery
Neurosurgery Last Updated: November 28, 2022 |
Early neural progenitors respond to extrinsic cues that maintain and support their potency. These stem/ progenitor cells are in direct contact with the cerebrospinal fluid (CSF), which acts as part of their niche. Our research program encompasses the early neural stem cell niche, neural tube closure, CSF, metabolism, and cortical neuronal development. We are dedicated to broad collaboration focused on translating an understanding of neurodevelopment and CSF biology into regenerative strategies. |
| PRISM mentor | Research Interests |
|---|---|
|
Samuel Yang Surg: Emergency Medicine
Surg: Emergency Medicine Last Updated: February 07, 2024 |
The investigative interests of my lab falls within the general themes of 1) Developing precision diagnostics for infectious diseases that integrates pathogen, host, and drug response information. This includes
2) Understanding the functional roles of extracellular DNA in neutrophil extracellular traps and biofilm
|
| PRISM mentor | Research Interests |
|---|---|
|
Sandy Napel Radiology
Radiology Last Updated: June 06, 2022 |
The practice of Radiology is undergoing a radical transformation from one in which the primary result of an imaging examination is a written report addressing the reasons that the examination was ordered, to one in which the output is a (set of) quantitative measurement(s) with links to knowledge that could affect treatment. For example, while a traditional report might have said “there is a mass in the right upper lobe of the lung,” the report of the future might say “The mass in the right upper lobe of the lung has grown by 25% since the last examination 3 months ago; it now measures 60 cc and has imaging features consistent with adenocarcinoma with an EGFR mutation that has has a favorable response to TK inhibitors. Click these links for similar cases and their clinical history. See references [1-4] for the latest articles of relevance.” Our lab, in collaboration with other IBIIS labs, radiologists, and other clinicians, and other collaborators from the School of Medicine, is involved in many aspects of creating that future, including advanced software for image visualization and quantitative analysis, image segmentation software that isolates regions within images for further analysis, software that extracts imaging features (e.g., shape, size, margin sharpness, pixel texture) within these regions, and algorithms for computing similarity between images and between patients as expressed by their images, demographic and clinical data.
|
|
Sharon Pitteri Radiology
Radiology Last Updated: November 11, 2021 |
The Pitteri laboratory uses mass spectrometry to identify, quantify, and characterize proteins in complex biological and clinical samples. We are focused on using proteins and their post-translational modifications to better understand biology and to answer clinical problems in health and disease states. Currently, a main focus of the lab is developing and implementing new methods to study protein glycosylation in cancer. |
|
Shreyas Vasanawala Radiology
Radiology Last Updated: February 23, 2024 |
We are seeking a talented individual for a research associate position in our multidisciplinary team. Our advanced pediatric MRI research program spans across novel developments in hardware, pulse sequences, machine learning algorithms, image reconstruction methods, and image analysis techniques, all with an integrated clinical translational component. Efforts bridge across multiple departments on the Stanford University campus and UC Berkeley, as well as with Silicon Valley companies. The position offers the opportunity to work with multiple faculty, post-doctoral scholars, graduate students, and undergraduates. Responsibilities include developing novel techniques, contributing to grant proposals, writing and submitting manuscripts, and developing intellectual property. |
|
Sindy Tang Radiology
Radiology Last Updated: August 24, 2023 |
Postdoctoral Research Fellow – Cell biology & microfluidics, UCSF & Stanford A joint postdoc position between the labs of Wallace Marshall (UCSF) and Sindy Tang (Stanford) is immediately available in the area of single-cell wound healing. The broad question we aim to answer is how the single-celled ciliate Stentor can heal drastic wounds. We are looking for a candidate with a background in cell biology or related fields. This position will allow ample opportunities to learn new techniques including microfluidics for single-cell manipulation and mathematical modeling. We have sequenced the Stentor genome, and developed tools for molecular manipulation of Stentor gene expression to pave the way to a molecular understanding of Stentor wound response. This project involves conceptualization of a novel chemical screen to test the role of the cytoskeleton in conferring wound resistance to the cell, and the role of large-scale mechanical force generation in complementing biochemical healing modes to close wounds of increasing severity. Some questions we ask are: how does Stentor cell mechanics give rise to wound resistance? How do cells respond to shear or other types of stresses? What molecular pathways are important in Stentor wound healing, and are they the same as in other eukaryotes? Required Qualifications: Required Application Materials: |
|
Sindy Tang Radiology
Radiology Last Updated: January 27, 2024 |
From finger prick tests for blood glucose monitoring to industrial-scale drug screening in pharmaceutical companies, the ability to extract information from scarce volumes of samples quickly and cheaply is key to effective disease management and drug discovery. To this end, microfluidics offers major advantages over conventional liquid handling due to drastic reduction in reagent volume and the precise control of single cells, microtissues, and their microenvironments. The micro-nano-bio lab under the direction of Dr. Sindy Tang aims to develop innovative micro and nanoscale devices that harness mass transport phenomena to enable precise manipulation, measurement, and recapitulation of biological systems, in order to understand the "rules of life" and accelerate precision medicine and material design for a future with better health and environmental sustainability. Our approach involves building new tools to probe biological systems (from single cells to microtissues), and engineering smart materials, synthetic cells & tissues with properties that mimic some of the amazing properties biological systems have. Current research projects include:
|
| PRISM mentor | Research Interests |
|---|---|
|
Sarah Fletcher Civil and Environmental Engineering
Civil and Environmental Engineering Last Updated: August 27, 2021 |
Water resources planning under uncertainty |
|
Sarah Fletcher Civil and Environmental Engineering
Civil and Environmental Engineering Last Updated: June 27, 2022 |
We work to advance water resources management to promote resilient and equitable responses to an uncertain future. We develop computational modeling approaches that bridge the natural, built, and social environments. Our approach improves understanding of the water and climate risks that threaten people and the environment, while developing systems-based engineering and policy solutions. |
| PRISM mentor | Research Interests |
|---|---|
|
Sarah Fletcher Woods Institute
Woods Institute Last Updated: June 27, 2022 |
We work to advance water resources management to promote resilient and equitable responses to an uncertain future. We develop computational modeling approaches that bridge the natural, built, and social environments. Our approach improves understanding of the water and climate risks that threaten people and the environment, while developing systems-based engineering and policy solutions. |
| PRISM mentor | Research Interests |
|---|---|
|
Sarah Heilshorn Materials Science and Engineering
Materials Science and Engineering Last Updated: December 01, 2021 |
Heilshorn's interests include biomaterials in regenerative medicine, engineered proteins with novel assembly properties, microfluidics and photolithography of proteins, and synthesis of materials to influence stem cell differentiation. Current projects include tissue engineering for spinal cord and blood vessel regeneration, designing injectable materials for use in stem cell therapies, and the design of biomaterials for culture of patient-derived biopsies and organoids. Postdoctoral candidates with expertise (or an interest in learning) preclinical animal models of injury and disease are particularly encouraged.
|
|
Shan Wang Materials Science and Engineering
Materials Science and Engineering Last Updated: July 14, 2022 |
Prof. Wang and his group are engaged in the research of magnetic nanotechnologies and information storage in general, including magnetic biochips, in vitro diagnostics, cell sorting, magnetic nanoparticles, nano-patterning, spin electronic materials and sensors, magnetic inductive heads, as well as magnetic integrated inductors and transformers. He uses modern thin-film growth techniques, lithography, and nanofabrication to engineer new electromagnetic materials and devices and to study their behavior at nanoscale and at very high frequencies. His group is investigating magnetic nanoparticles, high saturation soft magnetic materials, giant magnetoresistance spin valves, magnetic tunnel junctions, and spin electronic materials, with applications in cancer nanotechnology, in vitro diagnostics, spin-based information processing, efficient energy conversion and storage, and extremely high-density magnetic recording. His group conducts research in the Geballe Laboratory for Advanced Materials (GLAM), Stanford Nanofabrication Facility (SNF) and Stanford Nano Shared Facilities (SNSF), Center for Cancer Nanotechnology Excellence (CCNE) hosted at Stanford, and Stanford Cancer Institute. The Center for Magnetic Nanotechnology (formerly CRISM) he directs has close ties with the Information Storage Industry and co-sponsors The Magnetic Recording Conference (TMRC).
|
|
Shan X. Wang Materials Science and Engineering
Materials Science and Engineering Last Updated: May 31, 2024 |
Prof. Wang directs the Center for Magnetic Nanotechnology and is a leading expert in biosensors, information storage and spintronics. His research and inventions span across a variety of areas including magnetic biochips, in vitro diagnostics, cancer biomarkers, magnetic nanoparticles, magnetic sensors, magnetoresistive random access memory, and magnetic integrated inductors.
|
| PRISM mentor | Research Interests |
|---|---|
|
Sarah Heilshorn Bioengineering
Bioengineering Last Updated: December 01, 2021 |
Heilshorn's interests include biomaterials in regenerative medicine, engineered proteins with novel assembly properties, microfluidics and photolithography of proteins, and synthesis of materials to influence stem cell differentiation. Current projects include tissue engineering for spinal cord and blood vessel regeneration, designing injectable materials for use in stem cell therapies, and the design of biomaterials for culture of patient-derived biopsies and organoids. Postdoctoral candidates with expertise (or an interest in learning) preclinical animal models of injury and disease are particularly encouraged.
|
|
Sindy Tang Bioengineering
Bioengineering Last Updated: August 24, 2023 |
Postdoctoral Research Fellow – Cell biology & microfluidics, UCSF & Stanford A joint postdoc position between the labs of Wallace Marshall (UCSF) and Sindy Tang (Stanford) is immediately available in the area of single-cell wound healing. The broad question we aim to answer is how the single-celled ciliate Stentor can heal drastic wounds. We are looking for a candidate with a background in cell biology or related fields. This position will allow ample opportunities to learn new techniques including microfluidics for single-cell manipulation and mathematical modeling. We have sequenced the Stentor genome, and developed tools for molecular manipulation of Stentor gene expression to pave the way to a molecular understanding of Stentor wound response. This project involves conceptualization of a novel chemical screen to test the role of the cytoskeleton in conferring wound resistance to the cell, and the role of large-scale mechanical force generation in complementing biochemical healing modes to close wounds of increasing severity. Some questions we ask are: how does Stentor cell mechanics give rise to wound resistance? How do cells respond to shear or other types of stresses? What molecular pathways are important in Stentor wound healing, and are they the same as in other eukaryotes? Required Qualifications: Required Application Materials: |
|
Sindy Tang Bioengineering
Bioengineering Last Updated: January 27, 2024 |
From finger prick tests for blood glucose monitoring to industrial-scale drug screening in pharmaceutical companies, the ability to extract information from scarce volumes of samples quickly and cheaply is key to effective disease management and drug discovery. To this end, microfluidics offers major advantages over conventional liquid handling due to drastic reduction in reagent volume and the precise control of single cells, microtissues, and their microenvironments. The micro-nano-bio lab under the direction of Dr. Sindy Tang aims to develop innovative micro and nanoscale devices that harness mass transport phenomena to enable precise manipulation, measurement, and recapitulation of biological systems, in order to understand the "rules of life" and accelerate precision medicine and material design for a future with better health and environmental sustainability. Our approach involves building new tools to probe biological systems (from single cells to microtissues), and engineering smart materials, synthetic cells & tissues with properties that mimic some of the amazing properties biological systems have. Current research projects include:
|
| PRISM mentor | Research Interests |
|---|---|
|
Sarah Heilshorn Chemical Engineering
Chemical Engineering Last Updated: December 01, 2021 |
Heilshorn's interests include biomaterials in regenerative medicine, engineered proteins with novel assembly properties, microfluidics and photolithography of proteins, and synthesis of materials to influence stem cell differentiation. Current projects include tissue engineering for spinal cord and blood vessel regeneration, designing injectable materials for use in stem cell therapies, and the design of biomaterials for culture of patient-derived biopsies and organoids. Postdoctoral candidates with expertise (or an interest in learning) preclinical animal models of injury and disease are particularly encouraged.
|
|
Stacey Bent Chemical Engineering
Chemical Engineering Last Updated: July 14, 2022 |
The research in our laboratory is focused on understanding and controlling surface and interfacial chemistry and applying this knowledge to a range of problems in semiconductor processing, micro- and nanoelectronics, nanotechnology, and sustainable and renewable energy. Much of our research aims to develop a molecular-level understanding in these technologically important systems. Our group uses a variety of atomic and molecular spectroscopies combined with atomically-precise materials synthesis. Systems currently under study in our group include organic functionalization of semiconductor surfaces, mechanisms and control of atomic layer deposition, molecular layer deposition, area selective deposition processes, nanoscale materials for light absorption, interface engineering in photovoltaics and batteries, and catalyst and electrocatalyst synthesis and characterization. |
| PRISM mentor | Research Interests |
|---|---|
|
Sean Mackey Anesthesiology, Perioperative and Pain Medicine
Anesthesiology, Perioperative and Pain Medicine Last Updated: September 16, 2024 |
Mission of our group is to “Predict, prevent and alleviate pain”. Broad range of human pain research topics including neuroimaging, transcranial magnetic stimulation, EEG, psychophysics, patient outcomes, learning healthcare systems across many NIH funded projects. Projects include mechanistic characterization of pain to novel treatment developments.
|
| PRISM mentor | Research Interests |
|---|---|
|
Sean Wu Cardiovascular Institute
Cardiovascular Institute Last Updated: August 12, 2020 |
My laboratory seeks to identify mechanisms responsible for human congenital heart disease, the most common cause of still-births in the U.S. and one of the major contributors to morbidity and mortality in infants and toddlers. We believe that by understanding the mechanisms regulating growth and differentiation of heart precursor stem/progenitor cells during early embryonic development we can then apply these principles to understand the pathogenesis heart malformation during fetal development and to leverage them for treating adult onset heart diseases such as heart failure and arrhythmia. We currently use both genetically-modified mice as our in vivo model to understand the biology of heart development as well as induced pluripotent stem cells (iPSCs) as a in vitro model to study the process of heart cell formation. Our major areas of interests include cardiovascular developmental biology, disease modeling, tissue engineering, and regenerative biology. Within each of these areas we are particularly focused on understand the major genes that regulate the proper formation of heart chambers and the consequesnces of disrupting the normal expression of these genes and how that may lead to the development of congenital heart diseases. While mouse models are useful for studying the process of heart formation, they are not exactly like the human hearts in various ways. Since human heart fetal tissue are diffulty to obtain, we have chosen to use iPSCs derived from patients with particular congenital heart diseases to study steps involved in human heart malformation. Furthermore, to bring our work closer to treating heart disease patients, we have combined our expertise in stem cell biology with 3D biopring to make engineered functional heart tissue for screening drugs and to serve as replacement tissues for damaged heart muscles.
|
| PRISM mentor | Research Interests |
|---|---|
|
Sean Wu Cardiovascular Medicine
Cardiovascular Medicine Last Updated: August 12, 2020 |
My laboratory seeks to identify mechanisms responsible for human congenital heart disease, the most common cause of still-births in the U.S. and one of the major contributors to morbidity and mortality in infants and toddlers. We believe that by understanding the mechanisms regulating growth and differentiation of heart precursor stem/progenitor cells during early embryonic development we can then apply these principles to understand the pathogenesis heart malformation during fetal development and to leverage them for treating adult onset heart diseases such as heart failure and arrhythmia. We currently use both genetically-modified mice as our in vivo model to understand the biology of heart development as well as induced pluripotent stem cells (iPSCs) as a in vitro model to study the process of heart cell formation. Our major areas of interests include cardiovascular developmental biology, disease modeling, tissue engineering, and regenerative biology. Within each of these areas we are particularly focused on understand the major genes that regulate the proper formation of heart chambers and the consequesnces of disrupting the normal expression of these genes and how that may lead to the development of congenital heart diseases. While mouse models are useful for studying the process of heart formation, they are not exactly like the human hearts in various ways. Since human heart fetal tissue are diffulty to obtain, we have chosen to use iPSCs derived from patients with particular congenital heart diseases to study steps involved in human heart malformation. Furthermore, to bring our work closer to treating heart disease patients, we have combined our expertise in stem cell biology with 3D biopring to make engineered functional heart tissue for screening drugs and to serve as replacement tissues for damaged heart muscles.
|
|
Shoa Clarke Cardiovascular Medicine
Cardiovascular Medicine Last Updated: August 28, 2023 |
The Clarke Lab uses genomics, epidemiology, and data science to understand cardiovascular disease risk. Key areas of focus include: 2. Novel phenotyping using electronic health records, wearables, and/or medical imaging 3. Artificial intelligence applications to medical imaging 4. Studying nataionl biobanks (Million Veteran Program, UK Biobank, All of Us)
|
| PRISM mentor | Research Interests |
|---|---|
|
serena sanulli Genetics
Genetics Last Updated: February 03, 2023 |
We study the organizing principles of the genome and how these principles regulate cell identity and developmental switches. We combine Biochemistry and Biophysical methods such as NMR and Hydrogen-Deuterium Exchange-MS with Cell Biology, and Genetics to explore genome organization across length and time scales and understand how cells leverage the diverse biophysical properties of chromatin to regulate genome function. |
| PRISM mentor | Research Interests |
|---|---|
|
Shan Wang Electrical Engineering
Electrical Engineering Last Updated: July 14, 2022 |
Prof. Wang and his group are engaged in the research of magnetic nanotechnologies and information storage in general, including magnetic biochips, in vitro diagnostics, cell sorting, magnetic nanoparticles, nano-patterning, spin electronic materials and sensors, magnetic inductive heads, as well as magnetic integrated inductors and transformers. He uses modern thin-film growth techniques, lithography, and nanofabrication to engineer new electromagnetic materials and devices and to study their behavior at nanoscale and at very high frequencies. His group is investigating magnetic nanoparticles, high saturation soft magnetic materials, giant magnetoresistance spin valves, magnetic tunnel junctions, and spin electronic materials, with applications in cancer nanotechnology, in vitro diagnostics, spin-based information processing, efficient energy conversion and storage, and extremely high-density magnetic recording. His group conducts research in the Geballe Laboratory for Advanced Materials (GLAM), Stanford Nanofabrication Facility (SNF) and Stanford Nano Shared Facilities (SNSF), Center for Cancer Nanotechnology Excellence (CCNE) hosted at Stanford, and Stanford Cancer Institute. The Center for Magnetic Nanotechnology (formerly CRISM) he directs has close ties with the Information Storage Industry and co-sponsors The Magnetic Recording Conference (TMRC).
|
|
Shan X. Wang Electrical Engineering
Electrical Engineering Last Updated: May 31, 2024 |
Prof. Wang directs the Center for Magnetic Nanotechnology and is a leading expert in biosensors, information storage and spintronics. His research and inventions span across a variety of areas including magnetic biochips, in vitro diagnostics, cancer biomarkers, magnetic nanoparticles, magnetic sensors, magnetoresistive random access memory, and magnetic integrated inductors.
|
| PRISM mentor | Research Interests |
|---|---|
|
Shan X. Wang Radiology-MIPS
Radiology-MIPS Last Updated: May 31, 2024 |
Prof. Wang directs the Center for Magnetic Nanotechnology and is a leading expert in biosensors, information storage and spintronics. His research and inventions span across a variety of areas including magnetic biochips, in vitro diagnostics, cancer biomarkers, magnetic nanoparticles, magnetic sensors, magnetoresistive random access memory, and magnetic integrated inductors.
|
| PRISM mentor | Research Interests |
|---|---|
|
Sheri Krams Immunity Transplant Infection
Immunity Transplant Infection Last Updated: August 12, 2020 |
Current Research Projects
• Pediatric Research Immune Network on SARS-CoV-2 and MIS-C (PRISM) • Identification and Therapeutic Targeting of a Novel Cell Population in Rejection of Vascularized Composite Allotransplantation • Exosomes as a Reliable Noninvasive Method for Monitoring VCA Graft Rejection • Exosomes and the Immune Response in Allograft Outcomes in Pediatric Transplant
|
|
Sheri Krams Immunity Transplant Infection
Immunity Transplant Infection Last Updated: June 23, 2022 |
Our research focuses on the control of immune responses to alloantigen and viruses (EBV, SARS-CoV-2) using both experimental models and human immunology. Current studies ongoing in the lab are: Insight into Development and Progression of Multi-System Inflammatory Syndrome and COVID in Children. Molecular and Cellular Immunobiology/CyTOF/bioinformatics
|
| PRISM mentor | Research Interests |
|---|---|
|
Sheri Krams Surg: Transplantation Surgery
Surg: Transplantation Surgery Last Updated: July 13, 2022 |
Our research focuses on the control of immune responses to alloantigen and viruses (EBV, SARS-CoV-2) using both experimental models and human immunology. Current studies ongoing in the lab are:
|
|
Sheri Krams Surg: Transplantation Surgery
Surg: Transplantation Surgery Last Updated: June 23, 2022 |
Our research focuses on the control of immune responses to alloantigen and viruses (EBV, SARS-CoV-2) using both experimental models and human immunology. Current studies ongoing in the lab are: Insight into Development and Progression of Multi-System Inflammatory Syndrome and COVID in Children. Molecular and Cellular Immunobiology/CyTOF/bioinformatics
|
| PRISM mentor | Research Interests |
|---|---|
|
Sherri Rose Health Policy
Health Policy Last Updated: January 04, 2023 |
The research at Stanford's Health Policy Data Science Lab is centered on developing and integrating innovative statistical machine learning approaches to improve human health and health equity. This includes ethical algorithms in health care, risk adjustment, comparative effectiveness research, and health program evaluation. |
| PRISM mentor | Research Interests |
|---|---|
|
Sherri Rose FSI Center for Health Policy
FSI Center for Health Policy Last Updated: January 04, 2023 |
The research at Stanford's Health Policy Data Science Lab is centered on developing and integrating innovative statistical machine learning approaches to improve human health and health equity. This includes ethical algorithms in health care, risk adjustment, comparative effectiveness research, and health program evaluation. |
| PRISM mentor | Research Interests |
|---|---|
|
Shipra Arya Surg: Vascular Surgery
Surg: Vascular Surgery Last Updated: August 12, 2020 |
My health services research lab focuses on how novel risk predictors can be used to guide improvements in patient centered outcomes and healthcare value. I study improvement of healthcare outcomes for vulnerable populations such as frail and older adults and disparities in care for vascular patients. My accumulated research points to frailty as a versatile tool that can guide surgical decision making, inform patient consent and design quality improvement initiatives at the patient and hospital level. My previous work includes the development and validation of the Risk Analysis Index (RAI), a surgical frailty calculator that can be used prospectively with a clinical questionnaire or retrospectively. The RAI is easily applied, and when used in widespread preoperative screening, was associated with reduced mortality. The next step is to incorporate frialty screening into clinical workflow and develop interventions to mitigate postoperative adverse events for these high-risk patients. Using mixed methods (quantitative and qualitative) research and implementation science, we are now developing interventions to improve outcomes for this high risk population.
|
| PRISM mentor | Research Interests |
|---|---|
|
Shirit Einav Microbiology and Immunology
Microbiology and Immunology Last Updated: January 12, 2022 |
Our basic research program focuses on understanding the roles of virus-host interactions in viral infection and disease pathogenesis via both molecular and systems virology/immunology single cell approaches. This program is combined with translational efforts to apply this knowledge for the development of broad-spectrum host-centered antiviral approaches to combat emerging viral infections, including dengue, encephalitic alphaviruses, SARS-CoV-2 and Ebola, and means to predict disease progression. Our studies focus on the following emerging concepts that are transforming our understanding of virus-host interactions: 1. Understanding the pathogenesis of flaviviral infections via an integrative systems immunology single cell approach. The goal of this project is to elucidate the cellular and molecular factors contributing to increased severity of dengue and Zika disease in distinct patient populations (children, adults, pregnant women). To achieve this goal, we are advancing and utilizing various single-cell immunological approaches (virus-inclusive single cell RNA-seq, CyTOF etc) and samples from our large Colombia dengue cohort (>500 patients) and Zika cohort. We are mapping an atlas of viral immune cellular targets and studying critical protective and pathogenic elements of the host response to these viruses in multiple distinct infected and bystander cell subtypes with an unprecedented resolution. The translational goals of this project are to identify candidate biomarkers associated with infection outcome and candidate targets for antiviral therapy, as well as improve vaccine strategies. 2. Deciphering the intracellular membrane trafficking pathways essential for viral pathogens. We have used proteomic and genetic approaches to identify proteins that are critical for the replication of multiple globally relevant RNA viruses including dengue virus, Zika virus, encephalitis alphaviruses, SARS-CoV-2, hepatitis C virus, and Ebola virus. We are studying the molecular mechanisms by which these viruses hijack intracellular membrane trafficking pathways for mediating key steps in their viral life cycle and are characterizing the roles these factors play in cellular biology using viruses as complexed probes. Ongoing work focuses on the roles of cellular kinases and adaptor protein complexes in viral trafficking during viral entry, assembly, release, and direct cell-to-cell spread, the role of the ESCRT machinery in intracellular viral budding, and the roles of ubiquitin signaling pathways in the regulation of trafficking during viral assembly and release. 3. Advancing the development of small molecules targeting host functions as broad-spectrum antivirals. Most direct antiviral strategies targeting viral enzymes provide a “one drug, one bug” approach and are associated with the emergence of viral resistance. We have discovered several host functions exploited by multiple viruses as targets for broad-spectrum antivirals. We have demonstrated the utility of a repurposed approach that inhibits these factors in suppressing replication of multiple RNA viruses both in vitro and in mouse models and are advancing this approach into the clinic and studying its mechanism of action. In parallel, we are developing chemically distinct small molecules targeting various cellular functions as pharmacological tools to study cell biology and viral infection and as broad-spectrum antivirals to combat SARS-CoV-2, dengue virus, encephalitic alphaviruses and Ebola virus.
|
| PRISM mentor | Research Interests |
|---|---|
|
Shirit Einav Medicine, Infectious Diseases
Medicine, Infectious Diseases Last Updated: January 12, 2022 |
Our basic research program focuses on understanding the roles of virus-host interactions in viral infection and disease pathogenesis via both molecular and systems virology/immunology single cell approaches. This program is combined with translational efforts to apply this knowledge for the development of broad-spectrum host-centered antiviral approaches to combat emerging viral infections, including dengue, encephalitic alphaviruses, SARS-CoV-2 and Ebola, and means to predict disease progression. Our studies focus on the following emerging concepts that are transforming our understanding of virus-host interactions: 1. Understanding the pathogenesis of flaviviral infections via an integrative systems immunology single cell approach. The goal of this project is to elucidate the cellular and molecular factors contributing to increased severity of dengue and Zika disease in distinct patient populations (children, adults, pregnant women). To achieve this goal, we are advancing and utilizing various single-cell immunological approaches (virus-inclusive single cell RNA-seq, CyTOF etc) and samples from our large Colombia dengue cohort (>500 patients) and Zika cohort. We are mapping an atlas of viral immune cellular targets and studying critical protective and pathogenic elements of the host response to these viruses in multiple distinct infected and bystander cell subtypes with an unprecedented resolution. The translational goals of this project are to identify candidate biomarkers associated with infection outcome and candidate targets for antiviral therapy, as well as improve vaccine strategies. 2. Deciphering the intracellular membrane trafficking pathways essential for viral pathogens. We have used proteomic and genetic approaches to identify proteins that are critical for the replication of multiple globally relevant RNA viruses including dengue virus, Zika virus, encephalitis alphaviruses, SARS-CoV-2, hepatitis C virus, and Ebola virus. We are studying the molecular mechanisms by which these viruses hijack intracellular membrane trafficking pathways for mediating key steps in their viral life cycle and are characterizing the roles these factors play in cellular biology using viruses as complexed probes. Ongoing work focuses on the roles of cellular kinases and adaptor protein complexes in viral trafficking during viral entry, assembly, release, and direct cell-to-cell spread, the role of the ESCRT machinery in intracellular viral budding, and the roles of ubiquitin signaling pathways in the regulation of trafficking during viral assembly and release. 3. Advancing the development of small molecules targeting host functions as broad-spectrum antivirals. Most direct antiviral strategies targeting viral enzymes provide a “one drug, one bug” approach and are associated with the emergence of viral resistance. We have discovered several host functions exploited by multiple viruses as targets for broad-spectrum antivirals. We have demonstrated the utility of a repurposed approach that inhibits these factors in suppressing replication of multiple RNA viruses both in vitro and in mouse models and are advancing this approach into the clinic and studying its mechanism of action. In parallel, we are developing chemically distinct small molecules targeting various cellular functions as pharmacological tools to study cell biology and viral infection and as broad-spectrum antivirals to combat SARS-CoV-2, dengue virus, encephalitic alphaviruses and Ebola virus.
|
| PRISM mentor | Research Interests |
|---|---|
|
Shoa Clarke Medicine, Prevention Research Center
Medicine, Prevention Research Center Last Updated: August 28, 2023 |
The Clarke Lab uses genomics, epidemiology, and data science to understand cardiovascular disease risk. Key areas of focus include: 2. Novel phenotyping using electronic health records, wearables, and/or medical imaging 3. Artificial intelligence applications to medical imaging 4. Studying nataionl biobanks (Million Veteran Program, UK Biobank, All of Us)
|
| PRISM mentor | Research Interests |
|---|---|
|
Siegfried Glenzer SLAC National Accelerator Lab
SLAC National Accelerator Lab Last Updated: February 23, 2024 |
X-ray laser physics; matter at extreme conditions and fusion research
|
| PRISM mentor | Research Interests |
|---|---|
|
Simon Klemperer Geophysics
Geophysics Last Updated: September 09, 2020 |
| PRISM mentor | Research Interests |
|---|---|
|
Simon Klemperer Earth and Planetary Sciences
Earth and Planetary Sciences Last Updated: September 09, 2020 |
| PRISM mentor | Research Interests |
|---|---|
|
Simona Onori Earth System Science
Earth System Science Last Updated: February 23, 2024 |
Control Systems and Optimization Applied Math and Statistics Energy Storage Devices Energy Conversion Devices
|
| PRISM mentor | Research Interests |
|---|---|
|
Sindy Tang Mechanical Engineering
Mechanical Engineering Last Updated: February 10, 2023 |
Two postdoc positions in the lab of Prof. Sindy Tang are immediately available in the areas of microfluidics, nanofabrication, and spatial proteomics. The spatial organization of proteins within biological tissues plays a critical role in the normal functioning of the tissue and disease development. The goal of this NIH-funded project is to develop a high throughput and scalable technology to perform tissue microdissection that preserves tissue spatial information and couples directly to established LC-MS/MS workflow for deep and unbiased spatial mapping of the proteome. Our approach integrates a novel tissue micro-dicing device, a nanodroplet sample preparation platform for LC-MS/MS analysis with single-cell sensitivity, and novel microfluidic device to transfer the diced tissue pixels while preserving their spatial order. This position will allow exciting opportunities to collaborate with the Pacific Northwest National Lab and the Stanford School of Medicine. The project is expected to accelerate MS-based spatial proteomics for deep and unbiased mapping of tissue heterogeneity down to single-cell resolution, thereby accelerating biomedical research and clinical diagnostics towards a better understanding of the role of tissue heterogeneity in pathophysiology, such as the role of the tumor microenvironment on cancer initiation and progression. The deep and unbiased proteome coverage will enable the discovery of novel protein biomarkers and molecular pathways to identify new therapeutic targets, which would be difficult using antibody-based approaches. Our ability to quantitatively map ECM and secreted proteins will facilitate the elucidation of the role of ECM, such as their remodeling, in disease progression. Finally, while this project focuses on spatial proteomics, we expect our technology and workflow to be extended to other biomolecules that LC-MS/MS can readily measure, such as lipids and metabolites, thereby opening the opportunity for spatial multi-omic measurements in future studies.
|
|
Sindy Tang Mechanical Engineering
Mechanical Engineering Last Updated: July 14, 2022 |
The micro-nano-bio lab under the direction of Prof. Sindy Tang aims to develop innovative micro and nanoscale devices that enable precise manipulation, measurement, and recapitulation of biological systems, in order to understand the "rules of life" and accelerate precision medicine and material design for a future with better health and environmental sustainability. Current projects include: food allergy diagnostics, single cell wound repair, microdissection of multicellular structures for organoids and spatial biology. Check out our website for latest updates. |
|
Sindy Tang Mechanical Engineering
Mechanical Engineering Last Updated: August 24, 2023 |
Postdoctoral Research Fellow – Cell biology & microfluidics, UCSF & Stanford A joint postdoc position between the labs of Wallace Marshall (UCSF) and Sindy Tang (Stanford) is immediately available in the area of single-cell wound healing. The broad question we aim to answer is how the single-celled ciliate Stentor can heal drastic wounds. We are looking for a candidate with a background in cell biology or related fields. This position will allow ample opportunities to learn new techniques including microfluidics for single-cell manipulation and mathematical modeling. We have sequenced the Stentor genome, and developed tools for molecular manipulation of Stentor gene expression to pave the way to a molecular understanding of Stentor wound response. This project involves conceptualization of a novel chemical screen to test the role of the cytoskeleton in conferring wound resistance to the cell, and the role of large-scale mechanical force generation in complementing biochemical healing modes to close wounds of increasing severity. Some questions we ask are: how does Stentor cell mechanics give rise to wound resistance? How do cells respond to shear or other types of stresses? What molecular pathways are important in Stentor wound healing, and are they the same as in other eukaryotes? Required Qualifications: Required Application Materials: |
|
Sindy Tang Mechanical Engineering
Mechanical Engineering Last Updated: January 27, 2024 |
From finger prick tests for blood glucose monitoring to industrial-scale drug screening in pharmaceutical companies, the ability to extract information from scarce volumes of samples quickly and cheaply is key to effective disease management and drug discovery. To this end, microfluidics offers major advantages over conventional liquid handling due to drastic reduction in reagent volume and the precise control of single cells, microtissues, and their microenvironments. The micro-nano-bio lab under the direction of Dr. Sindy Tang aims to develop innovative micro and nanoscale devices that harness mass transport phenomena to enable precise manipulation, measurement, and recapitulation of biological systems, in order to understand the "rules of life" and accelerate precision medicine and material design for a future with better health and environmental sustainability. Our approach involves building new tools to probe biological systems (from single cells to microtissues), and engineering smart materials, synthetic cells & tissues with properties that mimic some of the amazing properties biological systems have. Current research projects include:
|
| PRISM mentor | Research Interests |
|---|---|
|
Stephanie Balters Psyc: Behavioral Medicine
Psyc: Behavioral Medicine Last Updated: February 08, 2024 |
Our goal is to understand how social factors such as interpersonal trauma and cultural biases impact brain function and mental health outcomes. With this knowledge, we develop evidence-based interventions to elevate work productivity, team performance, and well-being. We are passionate about embracing authenticity and vulnerability, and leveraging adverse experiences towards self-growth and achieving one’s full potential.
|